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Abstract

Unsupervised convolutional neural networks have
been successfully applied to various tasks, but their
biological plausibility is underexplored. Previous
research has developed both biologically plausible
networks and networks able to generate natural
images, but the gap between these network types
remains. This thesis aims at answering two ques-
tions: First, whether Variational Autoencoders
(MAES) - a specific type of convolutional neural
networks - are a biologically plausible model of
the visual cortex, and, second, whether the latent
representations of these networks are related to
semantic representations in the brain. Regarding
the first question, it is studied whether they learn
similar features as the primary visual cortex and
whether they employ sparseness similarly to the
brain. For answering the second question, it is
investigated how the model maps categorical and
continuous attributes in the latent space.

For this purpose, six different network types are
developed and evaluated on different established
datasets. The findings show that hierarchical and
non-hierarchical AHSs do not learn the same low-
level visual features as the human brain and that
VAHs do not seem to employ sparseness. In con-
clusion, feed-forward AH-models trained on static
images are probably an inapt model of the visual
cortex. Furthermore, it is argued that the latent
space represents many attributes of datasets in a
highly non-linear manner. This asks to revise com-
mon assumptions of the latent space structure.
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1 Introduction

In recent years, research in artificial neural networks has risen due to their success in a large
variety of tasks. The increase in research has led to progressively better network architectures
with higher performance. However, the improvement of network architectures is mainly driven
by the question of whether a new architecture will lead to better results [45].

Biological plausibility, an essential consideration in computational neuroscience, is often of no
interest to researchers aiming at solving complex problems. Initially, neural networks were
inspired by biology. Modern neural networks operating on images, mainly convolutional neural
networks (CNNs), indeed share many features with the visual system. However, recently, neural
network research has become more disconnected from the biological example.

Even though neural networks are trained differently than how the brain learns and builds
memories, it has been shown that image classification networks are related to the visual system.
This relatedness shows not only in areas where it has been intentionally built into the model.

Both the biological foundation of CNNs and the recent insights on their indirect relatedness to
the visual system qualify them as a potentially useful model of the visual system.

Unfortunately, the neural networks where the relatedness has been discovered are trained in a
supervised manner, requiring lots of labeled data. This kind of learning is disconnected from
human perception, where often one single example is sufficient when it comes to grouping objects
into classes.

The Variational Autoencoder (MWAE) is one important representative of generative models. This
class of models allows a different training procedure. They still require many samples, yet no
labels. Furthermore, VAHs build generalizable latent representations of inputs, which might be
similar to the abstract representation found in the brain when perceiving the world.

WA, therefore, could be an important step towards a more realistic model of the visual system.
A vital consideration in the context of computational neuroscience is the representation of visual
input. By design, MAHs learn an input representation that generalizes to some degree. Further-
more, it has been shown that the latent space learns some semantic relationship. Nonetheless,
the structure of the latent space is mainly a black box.

This thesis investigates whether MAEs could be a good model of the visual system, focussing
on the representation of data in the latent space.

The remainder of this work is structured as follows.

Section B introduces the theoretical background and related work. Starting points for further
studies and open questions are stated as well. Section B describes the methods and means of
work. Section B describes and discusses studies based on the open questions raised in Section B.



2 Theoretical Background

This thesis discusses whether Variational Autoencoders (MAES) are a good model of the vi-
sual system. The following sections, therefore, first introduce the human visual system and,
subsequently, work related to MAESs as a model of this.

2.1 Visual Cognition

The visual system allows humans and other developed animals to make sense of visual stim-
uli. The following sections describe how the visual systems’ hierarchical structure enables the
perception of gradually increasing complex visual features.

2.1.1 Cells

The brain, together with the spinal cord, constitutes the central nervous system (CNS) [d9, p.
340]. The CNS comprises two types of cells: neurons and glial cells [49, p. 71].

Even though glial cells occur two to ten times more often in the nervous system, neurons are
the basic units allowing signal exchange in the nervous system [49, p. 24]. In contrast, glial
cells surround neurons and play a supportive role but are not directly involved in this signal
exchange [49, p. 26].

Neurons take different forms in different brain regions. However, regardless of their specific
configuration, they have four defined regions [49, p. 22]. The (1) cell body (soma) performs
metabolism and contains genetic cell information. (2) Dendrites are attached to the cell body.
By branching out, they receive signals from other neurons. Through their (3) presynaptic
terminals, (4) azons transmit signals, the action potentials, to other cells [d9, pp. 22, 23].

2.1.2 Human Brain Structure

The human brain is subdivided into six regions of different forms and functions: medulla, pons,
midbrain, cerebellum, diencephalon, and the cerebral hemispheres [49, p. 340] (see Figure ).

Medulla, pons, and midbrain constitute the brain stem. The brain stem receives input from
some senses (but not vision) and plays a role in motor control [49, p. 341].

The cerebellum is mostly responsible for motor skills but is also involved in cognition [49, p.
341]. It contains more neurons than other brain divisions but only a few different types and is
well explored [49, p. 341].

The diencephalon contains the thalamus and hypothalamus. The thalamus acts as a filter,
deciding which information is forwarded to the neocortez [49, p. 341]. The hypothalamus plays
a vital role in controlling body functions such as eating or drinking and initiating behaviors [49,
p. 341].

The cerebral hemispheres [49, p. 341] is the brain region the most relevant for vision. It
can be further subdivided into the cerebral cortex, white matter, basal ganglia, amygdala, and
hippocampus [49, p. 341]. The latter three are “concerned with the expression of emotion
(amygdala), [...] memory formation (hippocampus), and ...control of movement and aspects
of motor learning (basal ganglia)” [49, p. 342]. Underlaid by the white matter, the neocortex is
the brain region that enables cognition [49, pp. 341, 392]. It is the region of the cerebral cortex
closest to the brain surface [49, p. 345].

The neocortex is structured into six layers and columns [d9, p. 345]. Neurons within a col-
umn are assumed to form a local processing network and are understood as “the fundamental
computational modules of the neocortex” [49, p. 348]. Depending on the layer, neurons show
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Figure 1: Five divisions of the human brain in the CNS, the cerebral cortex as part of the
cerebral hemispheres, and the spinal cord. Taken from Mack et al. [49, p. 340].

different kinds of connectivity. For example, Layer I mainly contains dendrites of cells in deeper
layers, whereas Layers II and III contain pyramidal neurons whose axons project onto other

neurons [49, p. 346].

Furthermore, the neocortex is structured topographically, i.e.,
cells within a sensory area (e.g., the skin or retina) map onto
the neocortex such that neighboring cells in the sensory area ul-
timately map onto neighboring regions in the neocortex [49, p.
343].

2.1.3 Visual Cortex

Through the retina, signals of visual stimuli travel through the
primary visual pathway that includes the lateral geniculate nu-
cleus (CLGN) 49, p. 559] (see Figure B). The primary visual
pathway transports the signals to primary visual cortex (MI),
the first region of the visual cortex [49, p. 559].

The LGN contains on-center and off-center cells that respond
strongly to stimuli having either a bright center and a dark sur-
rounding or a dark center and a bright surrounding in their recep-
tive field [49, pp. 564-566]. In the context of vision, the receptive
field of a cell is the area of the visual field, the neuron is respon-
sive to [49, p. 564]. Although signals travel primarily from LGN
to M, the LGN receives strong feedback from M. However, the
function of these feedback connections, outnumbering the num-
ber of feedforward neurons from the LGN by factor ten, is mostly
unknown [49, p. 573].

From M, information is propagated to other brain regions via
the wventral and dorsal pathways [49, pp. 563, 563]. The dor-
sal pathway is responsible for the pass of information regarding
the direction of movements, whereas the ventral pathway is con-
cerned with object recognition [d9, p. 564]. Figure B shows the
two pathways and the flow of information. From V4, the ventral
pathway has feedback and feed-forward connections from and to

Apical dendrites

Cell body
~
Basal
dendrites
S

Presynaptic
cell

Pre-
__ synaptic

terminal ‘
™ Post- ) ‘ e
synaptic
dendrite

Figure 2: The morphological
structure of a neuron, taken
from Mack et al. [49, p. 22]
(revised)

the temporo-occipital area (ITEQ), and from the MEQ it has feedback and feed-forward connec-
tions from and to inferior temporal cortex (IM), which, in turn, has feedback connections to
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N1 [49, p. 563].

The visual cortex is mainly structured in a feed-forward manner. Lower regions in the visual
cortex detect lower level features. In contrast, higher regions detect higher-level features [19, ['7]:
The primary visual cortex (M) detects edges [32, 9], while the secondary visual cortex (V2)
does not respond to such basic shapes [22]. Instead, it responds to naturalistic textures that are
combinations of features V1 is sensitive to [22]. The function of V4 is manifold - it “respond|s] to
more complex geometric shapes, color, and a large number of other stimulus characteristics” [19]
and it is assumed to perform foreground and background segmentation [58].

Furthermore, the quaternary visual cortex (M4) is assumed to play a role in visual attention.
Attentional mechanisms are assumed to be enabled by top-down connections. They allow the
suppression of irrelevant stimuli and focus on relevant ones in the current context [I7, bS]. M4
receives input from top-down connections and is assumed to enable attentional mechanisms [568].
The [T, finally, responds to high-level features such as faces and complex objects [A7, I9].

The two-stream hypothesis [25] states that the two pathways are concerned with the where
(dorsal stream) and what (ventral stream) in a visual scene [49, p. 520]. However, Mack et al.
[49, p. 564] note that the two pathways can exchange information. Nevertheless, they still
encode two different qualities of a stimulus: the identity and the location.

2.1.4 Visual Object Perception

Recognizing an objects’ identity is different from the ability to see an object or make a copy of
it. Rubens and Benson [60] report the case of a 47-year-old man who showed an inability to
recognize objects, and in cases where he was unable to recognize an object, he also could not
describe its use. When given the category of an object, “identification improved very slightly”:
He recognized the item after being told the name. When shown sketches of items, he was
generally unable to recognize the items. However, he was able to name geometric shapes such
as circles or squares present in the sketch. Even though the man did not recognize the objects,



he could make copies of them (see Figure ). Rubens and Benson [60] report that the patient
“was unable to identify any [items] before copying.” However, he was able to contain some of
the categories of the objects after copying them.

This example shows that the ability to see and reproduce an
object is different from the ability to recognize it.

For monkeys, the D is assumed to be the brain region being
crucial for object recognition [65, pp. 1070, 1071]. Bilateral le-
sions of the M in monkeys affect their ability to “distinguish
between different visual patterns or objects, and in retaining pre-
viously acquired visual discriminations” [65, p. 1070]. They are
no longer able to generalize from tasks learned in one half of
the visual space to the other half, presumably because the invari-
ance of representations is lost [65, p. 1070]. Squire et al. [65, p.
1071] explicitly point out the importance of the [Tl during object
recognition.

Figure 4: “Copies of line
2.1.5 Sparse Representations drawings.” taken from

When shown natural images, between 1.8% and 3.0% (with Rubens and Benson [B0]

p < 0.01) of mice M neurons are active across planes [74]. The

overlap of responsive neurons for different images is quite small.

Between 4.8% and 6.0% of neurons overlap for different natural images. The brain uses sparse-
ness to represent information ([74], [69, pp. 356, ff.]).

Sparse representations (or sparse codes) are a trade-off between local and dense codes [Z1].
Assume a region in the brain has N neurons that can either be on or off, depending on the
input. For a local code, one and only one neuron is active for a particular input. This coding
scheme allows to encode only N distinct inputs but representations of different inputs can be
superposed. Dense codes, in contrast, activate about one half of the neurons for an input. One
example is binary coding that can encode 2V different inputs. However, dense codes do not
allow to superpose representations of different inputs [21].

Sparse codes combine advantages of dense and local codes while avoiding their drawbacks [P1].
Unsupervised models trained to represent natural images from a sparse set of basis functions
have shown to learn Gabor-like basis function [53].

2.2 Types of Learning

In machine learning, one often distinguishes between the three fundamentally different types of
learning that are roughly described in the following.

Supervised Learning Algorithms employing supervised learning learn to predict the label
for samples representative for the training set. Datasets for this type of learning usually consist
of sets of samples x; and labels y;, where the label describes the desired outcome of the algorithm
on the sample. An example of supervised learning is object detection. Here, one is interested in
predicting what is present in an image or a sequence of images, e.g., images showing a dog or a
cat.

However, it is not always the case that a pre-defined and discrete set of samples and labels exist.
In active learning, the learning algorithm has no beforehand-dataset but has to query labels
for self-chosen data points in the sample space. In this setting, the learning algorithm chooses
itself what samples to use for learning.



In the example of a classifier distinguishing cats and dogs, the dataset of samples and labels is
available beforehand. In such settings, the learning algorithm learns the mapping function and
does not update it once the learning is finished. Contrarily, in online learning, the mapping
function is updated during the lifetime of a system, e.g., in recommender systems for streaming
services. Users get recommendations while using the service but also provide new labels for the
algorithm as they rate watched movies.

Self-supervised learning is a special case of supervised learning, where the learning algorithm
creates the labels itself. An example of this type of learning is the prediction of the next
frame in a video [72]. The dataset has no labels. However, given a sequence x;1,%;2,...,Zin
of images in a video, the sample at time ¢ can be considered as the supervised training set
(i1, ®i2,. .., ®ig), Tity1), 1<t <n—1. Self-supervised learning is also a subtype of unsu-
pervised learning. However, algorithms employing this approach usually use classical supervised
learning techniques. Another example of self-supervised learning is word embeddings [62].

Unsupervised Learning Like in self-
supervised learning, unsupervised learning
works with unlabeled data, i.e., the dataset
only consists of samples ;. A typical exam-
ple of unsupervised learning is clustering, an
approach that can be used if the data points ¢ o
can be compared in terms of a distance mea-
sure. Consider Figure B. A clustering algo-
rithm assigns the points labels as indicated
by the color.

Cluster algorithms are often employed in cases
where the class identity of data points is un-
known, i.e., they aim to find the labeling func- Figure 5: Data points colored by their cluster
tion by identifying clusters of data points. Fig- correspondence.

ure B shows an example where this can be fea-

sible because adjacent data points tend to have the same class.

Reinforcement Learning Reinforcement learning is quite a different paradigm from super-
vised and unsupervised learning. Here, the aim is to train an agent to achieve a goal.

An example is rats in a maze. A piece of cheese is located in one corner of the maze. The
different positions in the maze are the possible states; the set of all states is the state space.
The rat has multiple possible actions, going forward, backward, left, or right; the set of all
actions is the action space. In this setting, the rat is the agent, trying to maximize its reward.
It is rewarded for each action in a state (the reward can also be zero or even negative). By
rewarding good sequences of actions, the rat eventually shows a reasonable behavior.

Reinforcement learning algorithms resemble such settings by modeling a state space, an action
space, rewards, and a reward function [66, pp. 1, ff.].

2.3 Semantic Representations

Section T4 described a subject who was able to copy drawings of objects but not capture
their meaning. Squire et al. [65, pp. 1069, 1070] hypothesize that the subjects’ [Tl was impaired,
leading to an “inability to generate a high-level representation of the object.”

The term Semantic Representation refers to these high-level representations that allow to cap-
turing the meaning of a stimulus.



Albeit, a universally accepted definition for this term yet has to be found. Semantics is defined
as [
The branch of linguistics and logic concerned with meaning. There are a number of
branches and subbranches of semantics, including formal semantics, which studies
the logical aspects of meaning, such as sense, reference, implication, and logical form,
lexical semantics, which studies word meanings and word relations, and conceptual
semantics, which studies the cognitive structure of meaning.

This thesis is less concerned with linguistics but with meanings and relations, not of language
but images. A general definition of Semantic Representations, however, should not be restricted
to words or images. It should incorporate all kinds of concepts a human can form of perception.

In this thesis, Semantic Representations are somewhat related to Word Embeddings in natural
language processing (NLP). Word embeddings [62] are a vectorized representation of words in a
vector space. The training procedure learns a mapping from word into the latent space so that
the words’ position itself has meaning. One prominent example is that the vector space allows
“simple algebraic operations]...]. [I]t was shown for example that vector(‘King’) - vector(‘Man’)
+ wvector(‘Woman’) results in a vector that is closest to the vector representation of the word
Queen [...]” [62]. It has been shown that for word representations, they correlate with brain
activity fMRI data [69, 0].

Just like the brain maps similar visual stimuli to neurons close to one another, a semantic repre-
sentation should encode concepts such that encodings of similar concepts are close to one another
according to some distance metric. Unfortunately, a dense vector (as in word embeddings) as a
semantic representation is somewhat unrelated to active neurons subpopulation.

Another consideration is the mode of perception. Section 14 discusses that the [ seems to
play a crucial role in building and accessing semantic representations for visual input. Different
brain areas may be activated by different modes of presentation (e.g., visual vs. auditory).
However, only the brain regions that are active regardless of the mode of presentation are
candidate regions for amodal representations [20]. Fairhall and Caramazza [20] attempt to find
these brain regions by analyzing which brain regions are active for textual and visual stimuli
(both presented visually).

All in all, the question of how to obtain and assess good semantic representations remains. One
minimum requirement, albeit, is that those (amodal) semantic representations should behave
like biological examples.

This thesis focuses on visual-modal semantic representations.

For visual input, it has been shown that higher-layer activations of supervised convolutional neu-
ral networks (CNNs), described in the following section, explain [ cortical representation |36,
M0]. For unsupervised models operating on image data, in contrast, there is some evidence
that these models do not explain [T cortical representation (or by far worse than supervised
models) [B6] - even though not explicitly for CNNi.

Therefore, CNNs seem to be a promising candidate for visual-modal semantic representations.

2.4 Models of the Visual System

The following section discusses established models of the visual system.

2.4.1 Simple and Complex Cells in the Primary Visual Cortex

Hubel and Wiesel [32] distinguish two main types of cells in the MI: simple and complex
cells. Both cell types are orientation sensitive, i.e., different cells are tuned towards different



orientations of stripes in a stimulus. Unlike simple cells, complex cells are more invariant towards
the stripes’ location (but not its orientation) in the receptive field. Complex cells are assumed
to receive input from simple cells [32]. Based on this assumption, complex cells can be modeled
by receiving input from many simple cells, tuned towards a specific orientation but not location.
If any of the afferent simple cells fire, the complex cells fires, leading to a translation-invariant
behavior [32].

It can be shown that a two-dimensional Gabor wavelet, a (co-)sine function, modulated by a
Gaussian function, is an excellent stimulus for a simple cell in M1l in terms of the neuronal action
potential [34].

2.4.2 Neocognitron

The Neocognitron [23] is a model of object perception based on the findings of Hubel and Wiesel
[32]. It is a neural network consisting of models of simple (“S-cells”) and complex (“C-cells”)
cells, alternatingly arranged in multiple layers. It can be trained in an unsupervised manner by
reinforcing connections leading to high cell activations in the next layer and has shown to be
effective in pattern recognition [Z3].

2.4.3 Convolutional Neural Networks

CNNs [42] can be understood as a successor of the Neocognitron [#5] and is a network type
commonly used on image data [26, p. 326]. The convolutional layers of a CNN act as a pattern
detector, similar to the S-cells in the Neocognitron [d5]. After an activation layer, CNNs usually
perform an operation called (max-)pooling [26, pp. 326, 339]. The pooling operation introduces
invariance to the network, similar to C-cells [g5].

Convolution Assume [ is a two-dimensional grayscale image, and K is a convolutional kernel.
The convolution operation then is [26, p. 327]:

S(i,4) = I« K)(i,5)= > Y I(mn)K(@i—m,j—n) (1)

m=—00 N=—00

The result of the convolution is S, a feature map.

The kernel is usually implemented as a two-dimensional array [26, p. 327]. Values outside of
this array, as they are assumed in the summation in Equation [, are assumed to be zero. These
values then do not contribute to the sum, and the convolution effectively only has to use a finite
number of summations. In case of a 3 x 3 kernel, Equation [ simplifies to:

i+l j+1
m=t—1n=j5—1
Equation @ holds if indexing starts at zero for the image and at minus one for the kernel.

The output of a convolution is maximum in image areas where the image contains a flipped
version of the kernel. Unlike the cross-correlation®, the convolution is commutative. However,
this property is not relevant in practice, and “many neural network libraries implement [...] the
cross-correlation [instead]” [26, p. 329].

'The cross-correlation is defined as S(i,7) = (I * K)(i,5) = Y00 5% I(i+m,j+n)K(m,n) [I6, p.
329].



Padding The convolution operation applies the kernel at all image locations. At border pixels,
however, this operation is problematic because the sum in Equation 2 also considers image pixels
with an index smaller than ¢ or j. There are multiple options to deal with this problem.

One option is not to pad the image at all and to start and end the convolution at indices such
that the sum in Equation 2 is never applied to invalid image indices [26, p. 350]. However, this
leads to feature maps smaller than the input image because the border pixels are not considered.
This can be problematic for deep networks as this happens on all convolutional layers. Also,
the network does not consider border pixels equally often compared to non-border pixels.

Another option is zero-padding [26, p. 350], i.e., assuming values outside the image to be zero.
Here, the feature map is of the same size as the input. However, the network still handles border
pixels differently from inner pixels. The feature maps values for border pixels tend to be smaller
due to the multiplication with zero in Equation E.

Other padding techniques mirror the image at the borders or assume that all pixel values outside
the image are the same as at the borders 2.

Max-Pooling Like the convolution, pooling operations use a sliding window over the feature
maps, often with an offset (stride) such that the sliding window sees every pixel only once. A
stridden max-pooling has multiple effects. First, it leads to the downsampling of the image.
Downsampling is a useful property as it allows us to use more convolutional kernels in higher
layers without exceeding a systems’ memory®. Not less importantly, max-pooling makes the
network more invariant to small translations [26, p. 342]. In cases where translation invariance
is not desired?, but the image should be down-sampled, the max-pooling layer can be omitted,
and a stridden convolution can be used instead [26, p. 337].

Stridden Convolutions The stride of a convolution operation refers to the number of pixels
being skipped as the sliding window moves over the feature map [26, p. 348]. For example, a
stride of three with a 3 x 3 kernel leads to each pixel of the convolution input being evaluated
only once. A stride in the convolution usually replaces the max-pooling operation. Just like
max-pooling, it leads to a down-sampling of the image because it is evaluated fewer times.
Replacing max-pooling by strides seems to have no significant effect on network classification
performance [64], but it requires fewer evaluations than a full convolution with a subsequent
max-pooling step.

Transposed Convolutions Suppose we have a 4 x 4 input image which we are convolving
with a 3 x 3 kernel without padding and no stride, i.e., a stride of one. The output of this is a
2 x 2 feature map. In this example, the transposed convolution is the operation that transforms
a 2 x 2 input into a 4 x 4 output [IR¥]. This can be achieved by padding the 2 x 2 input with two
pixels on the borders. Convolving this padded input with a 3 x 3 kernel results in a 4 x 4 output.
Therefore, a transposed convolution performs an upsampling of the image. Usually, it is used
to inverse the convolution operation. Even though it could be implemented as described above,
it would be rather slow. Convolutions are mostly implemented as matrix multiplications [24].
The transposed convolution is then implemented multiplying with an (eponymous) transposed
matrix [IR].

Convolutional Neural Networks as Models of the Visual System By design, CNNs
share some features with the visual system, namely the convolution as a model of S-cells and

2https://Www.tensorﬂow.org‘/apiidocs/python/tf/pad, last access: 2020/06/18

30f course, the convolutional kernels itself are almost certainly unproblematic as they are very small. Each
convolution, however, produces another memory-consuming feature map.

4This is often the case for generative models.
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max-pooling as a C-cell model. However, CNNs show further unintentional parallels to the
visual system:

AlexNet [d0] is a deep CNN trained on image classification. Krizhevsky, Sutskever, and Hinton
[@0] have shown that this network learns Gabor wavelets in the first layers’ kernels. A Gabor
wavelet is the optimal stimulus for a Gabor-like kernel (see Section P-473), resulting in the
strongest excitement. It is also the optimal stimulus for cells in M1 (see Section P271, and Jones
and Palmer [34]).

Furthermore, Khaligh-Razavi and Kriegeskorte [36] have shown that CNNSs trained in a super-
vised manner show similar representational dissimilarity matrices (BRDMs) like the human [T
An BDM is a matrix encoding the correlation of activity patterns for a given model. Rows and
columns refer to different input stimuli. A cell in an BRDM then contains the correlation of the
activity patterns for the given input stimuli and the given model.

Eickenberg et al. [19] explicitly discuss CNNs as models of the visual system. Their findings
show that CNNs reproduce the hierarchy of semantic representations in the visual cortex [I9,
73]. The similarity of the RDMs is evidence that supervised CNNs and the human [T have a
similar high-level encoding of information.

Khaligh-Razavi and Kriegeskorte [36] also show that this is not true for a variety of unsupervised
models, yet, not for MAHs, the models mainly used in the course of this thesis. NATHs are
introduced in Section EZ52. The question of whether MAHSs show similar BDMs as the human
[0, therefore, remains.

It has been shown that MAHs, trained in a self-supervised manner, partially learn Gabor wavelets
when trained to predict the next image in a sequence of images [64]. Also, some unsupervised
models learn Gabor wavelets [63, #] but whether MAHs learn Gabor wavelets in lower layers
remains unanswered.

2.5 Generative Methods

Section 22 used the example of a “cat-and-dog-classifier” to introduce supervised learning.
Such a classifier is also an example of a discriminative model because it “model[s] the posterior
probabilities directly” [5, p. 43]. Therefore, a discriminative model, for example, does not allow
to predict the probability density of a data point in the feature space [5, pp. 43, 44]. Generative
methods model both the input and the output probabilities. Access to the input probability
allows sampling from the input space to generate new data points [B, p. 43]. The following
sections give an overview of existing generative methods.

2.5.1 Generative Adversarial Networks

The idea behind generative adversarial networks (GANS) [27] is to use two networks, one gen-
erator network G to approximate the data distribution, and another discriminator network
D +— [0, 1] to discriminate between true data points and data points generated by the generator
network. This interplay can be formalized as [27]:

V(D,G) = Eppypa(@)[l0g D(@)] + Ezpp, (2 [log(1 — D(G(2)))] (3)

where z is random noise®.

GANS are commonly used to generate new data points. Therefore, one is usually interested in
the generator network. It can be found by [27]:

G" = argminmax V (D, G). (4)
G D

®Usually CGaussian white noise.
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Figure 6: GAN-generated samples, taken from Brock, Donahue, and Simonyan [6].

The discriminator D in Equation B is trained towards maximizing V (D, G). A perfect discrim-
inator achieves this by labeling all true samples ® ~ pgata with 1 and all generated samples
G(z),z ~ py with 0. The correct labeling of all samples results in a value V(D, G) = 0, which
is the maximum.

The generator G is trained towards minimizing V (D, G). As the discriminator output is the
only variable term in V (D, G), G can only minimize V(D,G) by misleading the discriminator
to make a more significant error. If the generator reproduces the data distribution pqata, the
discriminator would no longer distinguish the generated from the real samples as they come
from the same distribution. Reproducing the data distribution is what is desired in generative
methods.

Recent improvements on (GANSs have led to syntheses of highly natural images, as shown in
Figure B.

The main disadvantage of GANS is training stability. When training GANSs, one commonly
encounters mode collapse or loss oscillation. For mode collapse, the generator produces only a
few or even just one sample [I7]. Mode collapse indicates a failure to match the posterior dis-
tribution, which is the GAN training objective. Loss oscillation occurs when the generator and
the discriminator alternatingly become stronger and weaker [28], leading to a non-convergence
of the model.

2.5.2 (Variational) Autoencoders

Autoencoders are models transforming input into a lower dimensional representation [26, p. 146].
Unlike the regular Autoencoder, VAES furthermore require the lower dimensional representation
to follow a defined distribution. Since Variational Autoencoders (VAESs) are a specialization of
the autoencoder, the traditional autoencoder is introduced first.

Autoencoders Autoencoders are neural networks trained to reconstruct their input [28, p.
499]. They consist of an encoder and a decoder. The encoder f : R™ — R™ transforms an
input @ to a hidden representation » = f(x). Usually, the encoder transforms the input into
a lower-dimensional representation (m < n). This mapping can be used for dimensionality
reduction or feature learning [26, p. 499]. The decoder g : R™ — R" transforms the hidden
representation back into the original feature space. Usually, one wants the reconstruction & to
be close to the original feature @ (& ~ x). In order to achieve this, the autoencoder is usually
trained by minimizing the loss L(z, g(f(x))) with

L:R" x R" — R. (5)
One common choice for £ is the mean squared error (MSE) which is defined as [P6, p. 106]:

Llay) = > (@ - i) (6)
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Note that for linear activations in the autoencoder, the subspace spanned by the first m principal
components is the optimal solution for equation B [I5].

Variational Autoencoders Autoencoders transform an input samples ® to a hidden rep-
resentation f(x). However, the distribution over f(x) is generally unknown. Let z = f(x).
Assume Z = z + € is a slightly perturbed version of z, created by adding a small amount of
noise €. Even though Z ~ z, in terms of equation B, the result after decoding can be very
different, i.e., g(Z) # g(z). This reconstruction-mismatch can occur because the distribution
p(2z) can take any arbitrary form. Values of z that are close to another® can be likely for very
different values of .

To generate new images, it would be advantageous to enforce p(z) to follow a particular distri-
bution. A common choice is an independent, multivariate normal distribution [38, pp. 24, 25].
VAHs [39] enforce a specific (usually Gaussian) distribution over z.

WVAHs are trained to generate samples that are likely to occur in the training set. Therefore,
they aim to maximize log p(z)” [3%, p. 18]. Assuming a latent prior distribution p(z) over z,
p(x) can be written as the marginal distribution

p(z) = / p(@, 2)dz (7)
— / p(|2) p(z)dz. (8)

Unfortunately, due to the integral w.r.t. z in equations [@ and B, computing p(z) is intractable [B8,
p. 13]. However, if the posterior p(z|x) was given, p(x) could be obtained by

since computing p(x, z) is tractable [3R, p. 14].

VAHs approximate the posterior by an inference model q4(z|x) ~ pg(z|x), also called the
encoder [38, p. 15].

To minimize the difference between g and p, usually, the Kullback-Leibler divergence ([KL-d o

plus the reconstruction error is minimized. The reason for this is as follows. The starting
point is that we cannot compute the posterior py(z|x). Therefore, we approximate it by an-
other distribution ¢4. The is used o minimize the difference between pg and py:

Drr(gs(2[) || po(z]))-

5For example in terms of Euclidean distance
"Note that maxlog p(x) = max p(x).
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is called variational lower bound or evidence lower bound (ELBQ) [38, p. 18].

The variational lower bound can be written as

po(x, 2) po(2|z)py(z)
qe(z|x) log qo(z|x log— 18
Z olzle)log =0 Z s(2| e (18)
po(z|x)
= S au(ea) [l pu(a) +10g 224E )] (19)
Z: ’ 4s(2le)
z|lx
—Z% z|x) log pg( +Zq¢> z|x)log Ez:w; (20)
Pol\Z|XT
Eqy(2l2) [log pg () +Zq¢ (z]x)log E :.’B;’ (21)
=log pg(x) , independent of z
=Dk (9s(2|2) || Po(z|))
but also as
po(x|z)py(2)
qus (z]a) 10g qus (z]a) log == 2022 e (22)
po(2)
= qs(z|x) |log pg(x|z) + log ] 23
;am[ (al2) + log L2 (23)
po(2)
=) go(z|lx)logpg(x|z)+ ) qu(z|x)log : (24)
S au(sla) e pa(al) + 3 astele) o L2
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Equations 21l and 24 allow two different interpretations of the ELBQO. Equation B0 justifies the
name evidence lower bound. If the nears zero, it approaches the likelihood of the
data [BR, p. 18]. However, pp(z|x) cannot be computed with a VAT

Equation B4, however, is more useful for implementing the error function of a MAH. Consider
the term inside the expectation of the first term. Usually, pyp(x|z) is chosen to be a normal
distribution with probability density function (PDH):

faula) = < 805’ (25)
Then
logfa,u(x)=10g< - e—%“a“f) (26)
1 /x—p 2
= —log 2770—2< . > . (27)

Since p, in this case, is a function of z (parametrized by #), we can consider this as the
reconstruction & = fy(z). Then, except for subtracting a constant and scaling by a constant,
equation 27 is the MSH. The sum on the left of Equation 24 is subsequently called reconstruction
term, the sum on the Kullback-Leibler (IKL)-term.

Since p(x|z) is a Gaussian, maximizing E,.) [p(z|2)] is equivalent to minimizing the mean
squared error between x and the reconstruction . & can be written instead of z because
p(z) = & and minimizing does not change the relation.

When implementing a WAH, g, and py are realized by neural networks. The encoder predicts the
mean and variances for an independent, multivariate normal distribution, whereas the decoder
reconstructs the input. The usage of neural networks poses a challenge for computing the first
term in equation 24. Usually, one would draw a sufficient number of samples from gy (z|x) to
approximate the expectation. However, sampling is impossible if one wants to compute the
gradient to train the model by backpropagation.

Backpropagation for the encoder would be intractable if z were realized as a random variable,
ie., z ~ gg4(z|x). This is because the gradients w.r.t. ¢ cannot merely be calculated for one
z ~ qy(2z|x) as this would be biased towards this z [38]. Instead, one would have to sample many
zs to approximate the expectation w.r.t. g4(z|x). This is not true for the decoder as its gradients
w.r.t. 6 are independent of this expectation. To solve this problem, implementations of MAKs
do not sample from the posterior g4(z|x). Instead, they use the resampling trick [38]. Under
this regime, z is the value of a function g(¢, x,€) where € ~ N(0,I) is a random variable [38].
In an intermediate step, the encoder predicts values p and log o and z, eventually, is realized
as z = p + o - € [88]. Using this trick, the encoder gradients are w.r.t. the expectation of e.
Backpropagation on a minibatch of data, therefore, is unbiased.

Unlike regular autoencoders, MAHs produce an interpretable latent space. Enforcing random-
ness in the positioning of points in the latent space guides the model to predict an area in the
latent space that is likely for a given input x [26, p. 701]. Eventually, this allows to sample
from the random space to generate new images, employing the decoder. Furthermore, it allows
simple arithmetic in the latent space (see Section ZZ573).

Even though the latent space is forced to follow a prior distribution, it remains unclear how
(lower-level) attributes of an image are encoded in this latent space.
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Disadvantages One problem arising when training NVAES is posterior collapse, meaning that
one or more of the latent dimensions resemble the prior ([28, p. 694], [2R]), i.e. [4Y]:

Ji 1 Vxqy (2i[x) = p () . (28)

In the most extreme case, this happens for all latent dimensions. In that case, the generator
cannot make use of x at all, because generated images are unrelated to the input image. The
KL-term is probably the reason for the posterior collapse as it is the term forcing the posterior
to match the prior distribution [48]. One technique to avoid posterior collapse is to lower the
weight of the KL-term compared to the reconstruction term [AR].

Another disadvantage of MAHSs are “blurry” and “fuzzy” reconstructions [7G]. According to
Zhao, Song, and Ermon [[76], these reconstructions occur for zs’ that are encodings of a variety
of different s’ They propose that blurry reconstructions are caused by the pixel-wise loss and
a too simple prior, e.g., a standard multivariate normal distribution [76].

2.5.3 Representation Learning

Representation learning originally addresses the learning of representations of input data that
makes models operating on this data more efficient [3]. In the context of NLP, for example,
sentences are often represented by Bag-of- Words vectors. In a Bag-of-Words vector, each cell
stands for one word in the vocabulary. The representation for one specific sentence is obtained
by assigning each cell the number of occurrences of its word in the sentence.

However, representation learning can also be considered in semantic representations (see Sec-
tion P3). As discussed earlier (see Section ZZ173), different regions of the visual cortex learn
representations of the input in different regions. Earlier regions learn representations of sim-
ple features, whereas later regions respond to sophisticated features of the input. RTherefore,
representations of inputs are learned in a hierarchy of simple to complex shapes [57].

The following paragraphs introduce different hierarchical representation learning approaches.

InfoGAN InfoGANs [I4] address feature learning in GANSs by “decomposing the input noise
vector into two parts” [14]. Instead of only the noise z, the generator G receives an additional
input of “structure latent variables” ¢ = (¢1, c2,...,cr). The additional variables are assumed
to be independent of each other. To force G not just to ignorce ¢, Chen et al. [I4] modify the
training objective such that “there should be high mutual information between latent codes ¢
and the generator distribution G(z,¢)” [[4]. The new loss function takes the form

mén max Vi(D,G) =V (D,G) — X(¢c;G(z,¢)), (29)

where V (D, G) is the training objective defined in Equation B, \ is a trade-off hyperparameter,
and I(x;y) is the mutual information between x and y.

“To disentagle digit shape styles on MNIST,” Chen et al. 4] choose ¢ as three-element set
c = (c1, ¢, c3) with ¢; drawn from a categorical distribution with ten categories (equal to the
number of classes in MNIST) and event probability p; = 0.1Vi € [0,10]. ¢2 and ¢3 are drawn
from a uniform distribution over [—1,1].

Figure @ shows the latent space separability by varying the c¢;-values. In conclusion, InfoGAN
seems to generalize as ¢, and ¢z vary between [—2, 2], even though these values were in [—1, 1]
at training time. Generalization is a critical property for a model of the visual context. Also,
InfoGAN addresses the problem of hierarchical learning. As discussed in Section P13, the
different regions in the visual cortex learn increasingly complex representations. Therefore,
InfoGAN, as a model employing hierarchical representations, addresses one more important
property of models of the visual system.
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Figure 7: Exploration of ¢ for InfoGAN on MNIST by traversing either, ¢1, ¢a, or c3. Rows
correspond to different noise values z but are equal for the three figures, columns correspond to
different values for ¢;. 1 takes discrete values, co and ¢z take continuous values. Taken from
Chen et al. [14].

StyleGAN StyleGAN [B5] is a type of GAN that explicitly addresses latent space separability
(see Section 277). The term style refers to latent space separability, i.e., the model is can learn
a disentanglement of images into different styles. Another term for style is factor of variation.
For human faces, for example, one style or factor of variation is the hair color.

The styles of an image are learned at different levels in a self-supervised manner. Therefore, it
is not possible to explicitly force the model to learn pre-defined aspects of an image. A posterior
analysis allows us to identify which aspects were learned on which level.

Karras, Laine, and Aila [85] train their model on a dataset of human faces. In this context,
coarse styles correspond to gender, age, or glasses. Middle styles correspond to skin color, face
form, or mouth open/closed. Fine styles correspond mainly to hair color and lightning.

GANSs generate new images using random noise z € Z as input (see Section PZ5T). Besides,
StyleGAN uses a mapping network f : Z — W to map the random noise to a vector w € W.
With an affine transformation, the vector w is then mapped to a vector y; = (ysi, yp,i). Different
vectors y; are fed into different layers ¢ of the generator network to control the style on this
layer.

The generator network g has a constant input xg that is lower-dimensional than the final output
image. xq is of size 4 X 4 x 512 [35]. On each layer, a noise vector €; is added, followed by
an adaptive instance normalization (AdaIN) operation. The [AdaIN operation of SyleGAN is
defined as [4]:

x; — p (i)
o (i)
where £(+) gives the mean and o(-) the (empirical) standard deviation. Importantly, this oper-

ation is applied separately for each feature map of x;.

AdaIN(x;, y) = Ys.i + Ybis (30)

On each resolution, ¢ first applies noise addition, AdaIN| a 3 x 3 convolution, noise addition,
and one last AdaIN operation. Then, the image is upsampled to double size. This process is
repeated until the image has the desired output size. Karras, Laine, and Aila [35] use nine of
these blocks, resulting in an output size of 1024 x 1024.

In StyleGAN, latent space separability is achieved by a technique called mizing reqularization.
Here, for a subset of the training images, two input vectors z; and zo are drawn. During the
training, a point (or layer) of g up to which layer z; controls the style is chosen at random.
After this point, the style information from zs is fed into the network. Randomly choosing this
point “prevents the network from assuming that adjacent styles are correlated” [35].

The training procedure allows for using two sources for the generation. During inference time,
the crossover point can be chosen arbitrarily, i.e., it can be controlled what styles are taken
from the first and what styles are taken from the second source.
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Encoder Decoder

T

Figure 8: Ladder Variational Autoencoder structure, adapted from Sgnderby et al. [68]. Solid
arrows indicate feed-forward connections, dashed arrows indicate weight sharing. Diamonds
indicate stochastic variables, circles deterministic variables. zs are latent spaces, s are model
inputs/outputs.

y;s fed into the network at a low resolution (i.e., ¢ is small) control the coarse styles, whereas
y; at higher layers control finer styles.

Finally, Karras, Laine, and Aila [35] analyze how disentangled generations from W-space are
compared to Z-space employing perceptual path length (see Section E8). They show that the
perceptual path length is lower for interpolating in W than for interpolation in Z [35]. Therefore,
they conclude that Z is more entangled than W in their setup.

Disentanglement in the latent space has important ramifications in the context of semantic
representations (see Section Z3). It has to be considered if the interpolation between two
points in the latent space requires a curved instead of linear path.

Ladder Variational Autoencoder Ladder Variational Autoencoders [68] address the prob-
lem of hierarchical learning in VA Hs. Classical MAE], in contrast, learn one latent representation
in one layer.

Hierarchical MAES, also, only use the first few layers to learn meaningful semantics of an input.
In the case of Sgnderby et al. [68], the first two layers are sufficient. Zhao, Song, and Ermon
[75] state that, given a sufficiently large encoder network in the first layer, the first layer learns
all the semantics. While this is not always true, they “demonstrate that this phenomen occurs
in practice [...]".

Ladder Variational Autoencoder (CLVAE) is a model designed to use all embedding layers to
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Figure 9: Illustration of context-dependent semantic ambiguity. Taken from Broeke [, p. 61]

learn a representation instead of just the first few layers. They do this by passing information
top-down in the inference network. Figure B gives an intuition of why passing information
top-down can be advantageous. Here, the two rows show two different alphanumeric strings.

Apparently, the first row shows a sequence of alphabetic characters (“GERBEN?”), whereas
the second row shows a sequence of numeric characters (“10 11 12 13 14 15”). However, “R”
and “B” in the first row are the same symbols as “12” and “13” in the second one. A simple
feed-forward system would be unable to discriminate between the low-level features R and 13.
Incorporating high-level features like alphabetic string helps to improve the posterior low-level
feature representation. Furthermore, the top-down pass is more biologically plausible than a
pure feed-forward network and enables the model to focus on relevant parts of the input (see
Section Z13).

Unlike hierarchical WAHs, LVAESs do not use lower stochastic embedding layers as input for
higher layers. Instead, they use a deterministic multi-layer network in the encoder (see Figure B)
and pass information from intermediate layers to the stochastic embedding layers.

d; = NN(d;-1) (31)
frq; = NN(d;) (32)
67 = NN(d;) (33)

The output from higher stochastic embedding layers is passed to lower layers via the decoder p:

1
Oqi = T35 ~_92 (34)
G + Opi
ﬂq,i&;z? + ﬂpyi&;f
Hq,i = PR R S (35)
Tgi TOpji
The latent variables then are sampled conditionally:
q(zil") = N(zilpqi o0,). (36)

Segnderby et al. [68] show that gradually increasing the weight of the KL-term in the MAE
training criterion leads to better usage of the latent spaces in terms of active units. Without
this warm-up phase, NAHs show many inactive units. Sgnderby et al. [68] discuss that MAEs
show this behavior because it allows them to minimize the KL-term in the MAH loss function
quickly.

Using batch-normalization and warm-up alone already leads to more meaningful representations
in the higher layers of a hierarchical VAE [68]. Using all these techniques on the LVAE model
allows meaningful representations in even higher layers than a hierarchical VAEE.

8In Sgnderby et al. [68], a hierarchical MAE with batch-normalization and warm-up learns meaningful repre-
sentations up to the fourth layer where as 5-layer LVAH also learns meaningful representations in the fifth layers.
Deeper models were not investigated.

18



conv2d_I: Conv2D ‘

conv2d_3: Conv2D |

batch_nor

batch_normalization_11: BatchNormalization

log_var_1: Dense re_lu_11: ReLU

batch_normalization_2: BatchNi izati ‘ |mu,l:Dense

dense_1: Dense dense_3: Dense

| batch_normalization_4:

batch_; ization_6: izati |

batch_normalization_12: BatchNormalization

batch_normalization_13: BatchNormalization

| batch_nor

log_var_2: Dense

| batch_nor

| | mu_2: Dense |

batch_normalization_14: BatchNormalization

reshape_1: Reshape

|bak:h_rm- ization_9:

flatten_3: Flatten

conv2d_transpose_1: Conv2DTranspose

l

‘ batch_normalization_15: BatchNormalization

| mu_3: Dense

log_var_3: Dense

conv2d_transpose_2: Conv2DTranspose

activation_1: Activation

(a) Varying ¢; € [0,10] (b) Varying cs € [—2,2]
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Variational Ladder Autoencoder Unlike the LVAE, the Variational Ladder Autoencoder
(MLAR) [i75] is a pure feed-forward network. Its design is driven by the idea that “[i]f 2z; is more
abstract than z;, then the inference mapping ¢(z;|x) and generative mapping when other layers
are fixed p(x|z;, z-; = 2%;) requires a more expressive network to capture” [75]. In simplified
terms, learning more complex input-features requires as deeper network than for less complex
input-features. Figure [ shows an exemplary network structure of a MLAH. Early embedding
layers like z1 (21 corresponds to z_1_latent in Figure [M) are equipped with a less powerful
network that. According to Zhao, Song, and Ermon [[75], early layers should not learn abstract

features®.

Equipping lower layers with less powerful networks allows MLAHSs to encode lower-level factors
of variation (for example stroke thickness in the context of a dataset of written digits) in lower
layers and higher-level factors of variation (e.g., digit identity) in higher layers. Zhao, Song,
and Ermon [75] claim that the NLAH, for such a dataset, learns different factors of variation
independently in different layers.

The hierarchical structure of embedding layers in the NLLAF make it a candidate model for the
visual cortex. However, the proposition that different layers learn different factors of variation
independently seems to be mostly based on an analysis on model-generated samples.

B-VAE Consider Equation P4, describing the loss function in a WAHE. Higgins et al. [29]
discovered that weighting both, the KL-divergence and the reconstruction loss, equally leads to
suboptimal results in terms of feature disentanglement. Therefore, they added a hyperparameter
B to the loss function, controlling the relative weights of the two terms in the S-MAH learning
objective [29]:

Eqy (zlw) l0g po(2|2)] = BDKL(9s(2[2) || p(2))- (37)

A value of 8 > 1 puts more emphasis on the KL-term than the original VAH loss function
(8 =1). Higgins et al. [29] state that this could lead to better feature disentanglement because
the KL-term “encourages conditional independence in gy(z|x)” [29]. A proper disentanglement
requires that some factors of the data are conditionally independent. However, Higgins et al.
[29] empirically show that disentanglement also succeeds for data not having this property.

Setting 8 > 1 also lowers the influence of the reconstruction error in the VAH training objective.
A larger 8 thus leads to worse reconstructions. The right parameter choice is therefore context-
dependent.

Burgess et al. [9] show that disentangled representations and a good reconstruction quality
can be achieved by giving the model “control of the encoding capacity.” Controlling encoding
capacity is done by introducing a parameter C to Equation B2 [9]:

Eqy(zle) (l0gpo(@ | 2)] — v [Drr (44(2 [ 2)[Ip(2)) - O (38)

During training, C is gradually increased from zero to a higher value (25 for dSprites with
~ = 1000 [9]).

VAB-GAN NABGANS [d1] are a variation of NAES specifically designed to replace the pixel-
wise reconstruction loss. Even on highly curated datasets such as MNIST (see Section BZ33),
VAES tend to generate blurry images [39]. The design of VAE-GANS is based on the assumption
that the pixel-wise loss in the MAH training objective (see Equation 22) is the reason for blurry

9In case of MNIST, more abstract features are for example the digit identity.

20



G D

O—{F—(w)—{g—(a)—{e—(3 —{D}— real / fike
Ny == @ [D}—— real / fake
Figure 11: Training of ALAE, adapted from Pidhorskyi, Adjeroh, and Doretto [55]

output images. Larsen et al. [A1] motivate this by stating that even small translations result in
a high pixel-wise loss™.

Instead of measuring the MSH between the true and the generated image, NAFHGANS train a
discriminator network to distinguish between generated and real images. They maximize

Laan = log(D(x)) +log(1 — D(G(2))), (39)

where D and G are the discriminator/generator networks,  an input image and z ~ N(0, I)
a random Gaussian sample. For MAEHGANS, the generator network is nothing but the decoder
network, whereas the discriminator network is an additional network.

Equation is sufficient to train the discriminator network. However, it does not force p(x)
to resemble a standard multivariate normal distribution, nor does it force reconstructions to
resemble the input image.

The latter is achieved by introducing an additional loss term

ﬁl?ike = _Eq(z|m) [logp (DZ(CC)’Z)] ) (40)

penalizing differences of intermediate discriminator layer activations between x and the re-
construction &. Forcing p(x) ~ N(0,I) is achieved by minimizing the KL-divergence as in
Equation 24

Lprior = Drr(q(z[z) || p(2)). (41)

The encoder minimizes Lyrior + E{ﬂke, the decoder minimizes 751?11@ — Laan™, and the discrim-
inator minimizes —LgAN.

Larsen et al. [41] show that this training procedure leads to less blurry reconstructions. Adapting
the MAEHGAN training objective to the ML AF-model could lead to improvements for that model
as well.

Furthermore, by training a discriminative network to distinguish between prior and posterior
samples, Makhzani et al. [60] have enforced arbitrary distributions in the latent space .

Adversarial Latent Autoencoder Similar to MAE-GANS, adversarial latent autoencoders
(ALAES) [b4] are a hybrid model between NAHs and GANSs. ALATESs are not based on variational
inference but on the GANS training objective.

The starting point of the ALAF model is to decompose both the generator G and discriminator
D into two parts, i.e., G = GoF and D = Do (see Figure [). G uses noise n as an additional

10This depends on the images’ frequency as well as the variance of the pixel intensities.
" Choosing v = 0.75 led to training convergence for the experiments performed for this thesis.
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input. F maps the Gaussian random noise z ~ N (0, I') to another latent representation w. The
loss function requires the outputs of F and &€ to be similar in terms of the [>-norm. Apart from
this, the w-space is unregularized. In addition to the [?-loss, the model is optimized towards
minimizing the discriminator and the generator loss.

Because pg(w) ~ pr(w), ALAE can generate reconstructions by
2~ (£00,)(@). (42)

The notion G, indicates that G uses 7 as an additional input.

Furthermore, just like for the MAH, the Gaussian latent space Z can be traversed to generate
new samples by

Tpew = (F 0 gn)(z)- (43)

Pidhorskyi, Adjeroh, and Doretto [55] show that (linearly) interpolating in w-space yields
smoother transitions than linear interpolation between two corresponding points in z-space.
This indicates that the w-space is less entangled than the z-space [62, 2]. However, traversing
the w-space directly is not easily possible as its structure is unknown. Compared to MAHs,
where a linear interpolation between points in the latent z-space leads to an almost geodesic
path in x-space™, the mapping function F seems to be non-smooth. Therefore, traversing z in
an AT AH seems to lead to a non-smooth path in the feature space.

Compared to the IVAH that uses a pixel-wise loss on the reconstructions, ATAH penalizes the
I?-norm of w and w. Except for this loss, ALAE by no means forces the input to be similar to
the reconstruction. This mitigates the problem of the pixel-wise loss in MAHSs that is assumed
to be the reason for blurry reconstructions.

For an in-depth discussion on representation learning with autoencoders, the reader is referred
to Tschannen, Bachem, and Lucic [70].

Feature Consistency One important property of the MAE latent space is that it captures
image semantics up to a certain degree. For a model trained on CelebA™ it is possible to add
sunglasses to a randomly generated face by adding the mean latent vector of images containing
sunglasses [A1, b6, B1]. Hou et al. [31] train a model particularly tailored to have this property by
using the perceptual loss (the between hidden layer activations of a feature extraction network).

Feature consistency as well as an interpretable latent space qualify MAESs as models of the visual
System.

2.6 Latent Space Disentanglement

Assume we have a dataset of images. Fach image consists of a shape (e.g., Square, Heart, and
Ellipse) at different z- and y-positions. Then, shape, x-position, and y-position are the “factors
of variation” [63, BO], say Si1, S2, and S3 with S; € S" [63]. Each image x € &A™ can be
generated from the factors of variation by a data-generating process g : 8™ x 8™ x §" — X"

In the context of MAES, the generator maps « to a vector z in the latent space. In a disentangled
latent space, if a single factor of variation (e.g., the shape) is changed, one and only one subspace
in the latent space is affected [B0].

12Therefore, points that are close in z-space of an KAE lead to images that are close in the feature space.
13See Section B3
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the training set” [35] to feature space

Figure 12: Unbalanced regions of probability density as one problem of latent space entangle-
ment (taken from Karras, Laine, and Aila [35])

A stricter definition additionally requires these subspaces to be linear subspaces of the latent
space [30]. Furthermore, it is often desired that latent space sampling leads to the data distri-
bution [35].

Latent space disentanglement is supposed to have two properties: Consistency and Restrictive-
ness, as defined in Shu et al. [63]. Consistency means that if only one factor of variation is
varied (e.g., the factor that attributes to an objects’ size), generated items only change for this
very factor but not to other factors (i.e., only the objects’ size is changing but not its shape).
Restrictiveness means that if again, only one factor ¢ of variation is varied, the choice of the
other factors should not affect the models’ measurement of the 7th factor. For example, if factor
1 again encodes an objects’ size, the same value of factor ¢ should always encode the same size,
irrespective of the choice of the other factors [63].

Consider Figure [Za and assume a dataset of voice records of males containing only two factors
of variation: age (z-axis from older to younger) and voice level (y-axis, bottom-up from lower
to higher). The missing square in the upper left is the combination “old and high voice level”
that is not present in the dataset. Now, consider Figure I2H. The latent space is forced to
follow a prior distribution. Figure [2H shows a mapping from a standard normal latent space
to the feature space. The upper left square in Figure IZ3 is not present in this latent space.
Therefore, there are regions of higher (or lower) probability density in the latent space than in
the data space.

Different methods have been proposed to measure the degree of latent space entanglement. One
approach is to measure the degree by which a generated image changes as the latent space is
traversed (perceptual path length (PPT)) [85]. The PPI measures by how much reconstructions
change for small variation in the latent space. It is calculated by moving by a small value e
on a path obtained by interpolating between two random z1, zo (or wy, wo)™, and taking the
perceptual loss [83] between the image before moving by € and after. Finally, the mean of this
value is obtained by applying the procedure for sufficiently many samples. If the latent space
is entangled, this value should be on average higher compared to a disentangled space.

Another approach is Linear Separability, measuring how well a linear hyperplane can separate
sets of points. For this purpose, a linear support vector machine (SEVM) is trained to predict
class labels based on the latent points [35].

Kim and Mnih [87] propose to generate data by fixing one factor of variation (for example,

“Interpolation is spherical for z and linear for w.
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one dimension in the latent space) and randomly sampling from others. If the latent space is
disentangled, there should be one or multiple almost invariant dimensions in the generated data
that account for the fixed factor of variation.

2.7 Latent Space Separability

Latent Space Separability is related to Latent Space Disentanglement, but it is used in a stricter
sense in the course of this thesis. Whereas Latent Space Disentanglement was mainly motivated
by the disentanglement of one latent space, Latent Space Separability is concerned with splitting
up the latent space representation of features into multiple levels of latent spaces. If successful,
Latent Space Separability allows to directly control the factors of variation without the need
to find the subspace in one latent space controlling this factor. Besides this, latent space
separability has the same properties as latent space disentanglement. If there are less layers
than factors of variation, the latent spaces in one layer also have to be disentangled.

For example, InfoGAN (see Section ZZa73) and NLAHES are based on this principle.
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3 Methods

The following Sections describe the methods used in the course of this thesis.

3.1 Research Questions

The studies in Section B are guided by the following research questions:

Number  Question

RQ1 Are NABs or VLAHs related to the visual cortex in terms of ...
a) ...the emergence of Gabor wavelets?
b) ...sparse coding?
RQ2 Do MAHs or VL AES fulfil the requirements of latent space disentanglement or
latent space separability?
RQ3 Can MAEs or L AHS represent both continuous and categorical factors of varia-
tion in the latent space?
RQ4 How do NAESs and VL AEs represent lower factors of variation in the latent space?
RQ5 Do NAHs or VILAHs learn independent factors of variation independently in the
latent space?
RQ6 Are the latent spaces of MLAHs independent in terms of generated images?
RQ7 Do NAEs/NLAHs-generated images resemble the data distribution?
RQS8 Is the discriminative loss superior to the pixel-wise loss in terms of the previous

research questions?

Table 1: Research Questions

3.2 Implementation Details

All models are implemented with Keras™ in Version 2.2.4 using the TensorFlow" backend in

Version 1.15.. The models are trained on Tesla V100-DGXS GPUs with 16GB of RAM. The
model code can be found under https://github.com/LeolV /master-thesis-leonard.

3.3 Datasets

Five different datasets were used to train the models. Four of the datasets contain images of
different sizes, the fifth dataset provides additional labels for one of the datasets. The images
were resized to match the models’ expected input sizes using Lanczos interpolation [, pp. 223,

ff].

3.3.1 CelebA

The CelebA dataset [d6] consists of 202,599 RGB images of size 178 x 218 pixels representing
celebrities, as well as 40 binary attributes. The images belong to 10.177 unique identities™ as
well as five “landmark annotations”. They are aligned and cropped resulting in images of same
size always showing only one face (see Figure 3 for an example). The landmark annotations
give the positions of facial attributes in the image; the left and right eye, the nose, and the

15https://keras.io/|, last access: 07/01/2020
Y https: //www.tensortlow.org/], last access: 07/01/2020
"The identities are not revealed.
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Figure 14: Examples from the MNIST dataset.

left and right corner of the mouth. The binary attributes indicate if the image has certain
characteristics, for example if the person wears eyeglasses, has black hair, is smiling™.

3.3.2 ImageNet

ImageNet™ is a large-scale “image database organized according
to the WordNet hierarchy” [IG]. It contains of over 14 million
images as of February 2020. According to WordNet?, the images
are subdivided into groups called “synsets” [[6] on different levels
of granularity. For example, the group woman, adult female is
subordinated to person, individual, someone, somebody, mortal,

soul and is further subdivided into groups like old woman or lady
1

A smaller version of ImageNet, commonly called ILSVRC2012
has been used for Large Scale Visual Recognition Challenge
2017 (ICSVRC2017) [61], consisting of approximately 1,3 million
images from 1000 different classes, that were selected, such that
“there is no overlap between synsets: for any synsets ¢ and j, i is

not an ancestor of j in the ImageNet hierarchy” [I6]. Figure 13: A sample image
from the CelebA dataset.

This curated version is commonly used as a baseline [40, 67]%2.

3.3.3 Mnist

MnNiSTZ [43] is a widely-used dataset of hand-written digits. Figure 4 shows ten examples
from this dataset. The data is subdivided into a training set of 60.000 images and a test set
containing 10.000 images. The digits are all of the same size and centered. The samples are
grayscale images of size 28 x 28pixels.

189ee https://www.kaggle.com/jessicali9530/celeba-dataset#list _attr celeba.csv for a complete list of the at-
tributes, login required. Last access: 12/02/2020.

wh‘ctp://image-netom/7 last access: 12/02/2020.

20Gee https://wordnet.princeton.edu/, last access: 12/02/2020.

2ImageNet 2011 Fall Release, http://image-net.org/explore, last access: 12/02/2020.

22Gee https://paperswithcode.com/sota/image-classification-on-imagenet for an overview of models on Ima-
geNet. Last access: 07/16/2020

23http://yann.lecun.com/exdb/mnist/, last access: 23/04/2020
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3.3.4 Morpho-Mnist
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Figure 15: Distribution of the Morpho-MNIST attributes for the different digits. Taken from [IT].

Morpho-MNIST [[1] is an extension of the MNIST dataset that addresses the question: “(T)o
what extent has my model learned to represent specific factors of variation in the data?” [I1].
To address this questions, Morpho-MNIST provides the following (continuous) labels of mor-
phological attributes of the MNIST samples: stroke length, stroke thickness, slant, width, and
height.

Besides providing additional labels of low-level MNIST attributes, Morpho-MNIST provides a
toolbox to measure (i.e calculate the morphological labels) and perturb MNIST images. The
perturbation toolbox allows it to thin, thicken, swell, and to add fractures to an image. Morpho-
MNIST also provides pre-computed datasets that were built using the perturbation toolbox.

Importantly, the distribution of the morphological attributes partly is highly skewed (for exam-
ple Thickness and Height, see Figure [3).

3.3.5 dSprites
dSprites® [51] is a dataset designed “to assess the disentanglement properties of unsupervised
learning methods.”. It contains 737,280 grayscale images of size 64 x 64 pixels. The images were
generated from “6 ground truth independent latent factors”: color, shape, scale, orientation, z-
position, and y-position. The color is white in all images. The shapes are: square, ellipse, and
heart. For the other factors, points are chosen evenly along their support: six values in [0.5, 1]
(scale), 40 values in [0, 27] (orientation), 32 values in [0,1] (2-position and y-position). Each
factor combination only occurs once in the data set. The dataset also contains the factor labels
for each image.

3.4 Models

Fight different WAH], six different MLAF, four different WAHE-generative adversarial network
(GAN), and four different VLAE-GAN were evaluated in the course of this thesis. Furthermore,
two “AlexNet” models were used for some additional experiments.

The models vary depending on the dataset and are described in the following. An overview is
given in Table B. A more detailed description can be found in Appendix Al
3.4.1 VAE Models

The WVAH model (see Section @) consists of an encoder and a decoder. The encoder is made up
of multiple “Convolution, Activation, Batch-Normalization”-blocks, followed by the embedding

24https://github.com/deepmind/dsprites—dataset/, last access: 5/28/2020
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model name dataset input /output latent reconstruction feature
size space term weight map

size reduction

factor

MNiIsT-VAE MNIST 28 x 28 x 1 2 10,000 1
(dSprites/10,000)-NVAE dSprites 64 x 64 x 1 10 10,000 1
7,500-MAH dSprites 64 x 64 x 1 10 7,500 1
6,250-VAE dSprites 64 x 64 x 1 10 6,250 1
5,000-MAH dSprites 64 x 64 x 1 10 5,000 1
3,750-MAE dSprites 64 x 64 x 1 10 3,750 1
dSprites-MAH-dim6 dSprites 64 x 64 x 1 6 10,000 1
CelebA-VAE CelebA 128 x 128 x 3 8 3,750 1
MNIST-VLAH(-factor-1) MNIST 28 x 28 x 1 2,2,2 10,000 1
MnNisT-VLAE-factor-2 MNIST 28 x 28 x 1 2,2,2 10,000 2
MnisT-VLAFEHfactor-3 MniIsT 28 x 28 x 1 2,2,2 10,000 3
dSprites-NVLAE dSprites 64 x 64 x 1 4,4,4 10,000 1
dSprites-NLAE-dim2 dSprites 64 x 64 x 1 2,2,2 10,000 1
CelebA-NVLAH CelebA 128 x 128 x 3 2,2,2 10,000 1
MnNisT-VAEGAN MNIST 28 x 28 x 1 2 10,000 1
dSprites-MABHGAN dSprites 64 x 64 x 1 10 10,000 1
CelebA-VAE-GAN CelebA 128 x 128 x 3 8 10,000 1
MnNI1sT-VLABGAN MNiIsT 28 x 28 x 1 2,2,2 10,000 1
dSprites-NLAE-GAN dSprites 64 x 64 x 1 4,44 10,000 1
CelebA-VLAE-GAN CelebA 128 x 128 x 3 2,2,2 10,000 1
AlexNet Classifier ImageNet 224 x 224 x 3 - - 1
AlexNet VAH ImageNet 224 x 224 x 3 2000 10,000 1

Table 2: Overview of all models with important parameters.
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encoder_input: InputLayer decoder input' InputLayer

encoder_conv_0: Conv2D

dense_1: Dense

batch_normalization_1: BatchNormalization

re_lu_I: ReLU
encoder_conv_1: Conv2D

batch_normalization_2: BatchNormalization

reshape_1: Reshape

decoder_conv_t_0: Conv2DTranspose

batch_normalization_6: BatchNormalization

re_lu_2: ReLU
encoder_conv_2: Conv2D

batch_normalization_3: BatchNormalization

re_lu_3: ReLU

leaky_re_lu_1: LeakyReLU

decoder_conv_t_1: Conv2DTranspose

batch_normalization_7: BatchNormalization

encoder_conv_3: Conv2D

batch_normalization_4: BatchNormalization

re_lu_4: ReLU
encoder_conv_4: Conv2D

leaky_re_lu_2: LeakyReLU

decoder_conv_t_2: Conv2DTranspose

batch_normalization_8: BatchNormalization

batch_normalization_5: BatchNormalization

re_lu_5: ReLU
flatten_1: Flatten

mu: Dense

leaky_re_lu_3: LeakyReLU

decoder_conv_t_3: Conv2DTranspose

log_var: Dense

encoder_output: Lambda activation_1: Activation

(a) Encoder (b) Decoder

Figure 16: VAE model structure
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layer. The embedding layer predicts x and log 02 and performs the resampling by:

Z =+ €0 (44)
e~ N(0,I). (45)

The encoder input size is equal to the decoder output size and depends on the dataset. The
number of “Convolution, Activation, Batch-Normalization”-blocks is chosen depending on the
input size, as smaller input sizes require fewer layers to achieve a receptive field of the input
size. The batch-normalization [26, pp. 317, ff.] can be omitted®™. The activation can be
either ReLU [26, p. 173] or LeakyReLU [26, p. 192] and is ReLU unless stated otherwise.
The convolutions use zero-padding unless stated otherwise. Encoder and decoder use stridden
convolutions for downsampling, unless stated otherwise.

The MAH model implements the loss function from Equation B4 but with a pre-factor for the
reconstruction term. The reconstruction term pre-factor was determined empirically, observing
reconstruction and generation quality.

The decoder uses similar blocks as the encoder but employs transposed convolutions [26, pp.
356, f.] instead of convolutions to upsample feature maps. The output layer of the decoder uses
a sigmoid activation instead of ReLU.

In total, eight MAFE-models are used: “MNIST-MAHR”, “dsprites-MMAE”, “7,500-MAH”, “6,250-
VAR”, “5,000-MAE”, “3,750-MAR", “dsprites-NMAH-dim6”, and “CelebA-WAE”. The model struc-
tures can be found in Appendix [ATl.

Mnist-VAH MNIST-MAH uses an input- and output-size of 28 x 28 x 1 (MNIST images are
grayscale images). The model is trained with the Adam optimizer on the MNIST training set
with a batch size of 128 and a learning rate of 0.001 for 200 epochs. The reconstruction loss
factor is 10,000. The latent space is two-dimensional. The inner activation function is ReLU.

dSprites-VAE dSprites-IVAE uses an input- and output-size of 64 x 64 x 1. The model is
trained with the Adam optimizer on a training set consisting of 90% of the dSprites dataset
with a batch size of 128 and a learning rate of 0.001 for 200 epochs. The reconstruction loss
factor is 10,000. The latent space is ten-dimensional. The inner activation function is ReLLU. For
dSprites, four additional models have been trained with a different reconstruction term weight:
7,500-MAE, 6,250-MAH, 5,000-MAE, and 3,750-MAH. These models differ from dSprites-MAH
only in the reconstruction term weight.

dsprites-VAE-dim6 The dsprites-VAE-dim6 is equivalent to the dSprites-AHE model but
uses a six-dimensional latent space.

CelebA-VAE CelebA-NVAE uses an input- and output-size of 128 x 128 x 3. The model is
trained with the Adam optimizer on a training set consisting of 90% of the CelebA dataset with
a batch size of 128 and a learning rate of 0.001 for 200 epochs. The reconstruction loss factor
is 10,000. The latent space is eight-dimensional. The inner activation function is ReLU.

3.4.2 VLAE Models

Figure 2 shows the NLAH model structure. Like the MAH, it consists of an encoder and a
decoder. The encoder has three latent spaces®® A re-sampling according to Equation ES is
performed for each of the latent spaces. Lower latent spaces are equipped with a less powerful

25Tt is stated in the experiments if batch-normalization is omitted.
26 z_1_latent, z_2_ latent, and z_3 latent in Figure [Za.
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Figure 17: VLAE model structure
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encoder (e.g., z_1_latent in Figure [7a), higher latent spaces with a more powerful encoder.
Again, the network is composed of multiple “Convolution, Activation, Batch-Normalization”-
blocks. The number of these blocks is variable and chosen depending on the dataset. Batch-
normalization can be omitted (default), the inner activation can be either ReLU (default) or
LeakyReLU. The convolutions use-zero padding, and encoder and decoder use stridden convo-
lutions for downsampling.

The MAH model implements the loss function from Equation but with a pre-factor for the
reconstruction term. The Kullback-Leibler (KI)-terms of different layers are totalized.

The decoder has three inputs, where the first input of the decoder®® receives input from the last
output of the encoder®®. The decoder uses blocks similar to the encoder but with transposed
convolutions instead of regular convolutions.

In total, six ML AE-models are used: “MNIST-MLAHE-factor-1”, “MNIsST-VLAE-factor-2”, “MNIST-
VT AR factor-3” “dSprites-NLAH” “dSprites-NLAE-dim2”, and “CelebA-NLAH”. The model
structures can be found in Appendix A2

Mnist-VLAE The three MNIST-VLAES? use an input- and output-size of 28 x 28 x 1. The
models are trained with the Adam optimizer on the MNIST training set with a batch size
of 128 for 200 epochs. The reconstruction loss factor is 10,000. The latent spaces are two-
dimensional. The inner activation function is ReLLU. The models use no batch-normalization.
MnNisT-VLAFHfactor-1 is the model with the original number of feature maps, for MNIsST-MLAFE}H
factor-2 and MNIST-WLAE-factor-3, the number of feature maps is reduced according to the
factor. MNIST-MWLAH-factor-1 is trained with a learning rate of 0.005. MNIST-NLAE-factor-2
and MNIST-VLAE-factor-3 are trained with a learning rate of 0.001.

dSprites-WVLAKE dSprites-VLAF uses an input- and output-size of 64 x 64 x 1. The model
is trained with the Adam optimizer on a training set consisting of 90% of the dSprites dataset
with a batch size of 128 and a learning rate of 0.001 for 200 epochs. The reconstruction loss
factor is 10,000. The latent spaces are four-dimensional. The inner activation function is ReLU.

dSprites-VLAF-dim2 The dSprites-NVLAFE-dim2 model is equivalent to dSprites-VLAH but

uses a two-dimensional latent space.

CelebA-NVTLAE CelebA-NLAH uses an input- and output-size of 128 x 128 x 3. The model
is trained with the Adam optimizer on a training set consisting of 90% of the CelebA dataset
with a batch size of 128, a learning rate of 0.001 with an additional learning rate decay of 0.01
for 200 epochs. The reconstruction loss factor is 10,000. The latent spaces are two-dimensional.
The inner activation function is ReLU.

3.4.3 VAE-GAN Models

The VAEHGAN-model is similar to the NAE-model. However, it implements the NAE-GAN loss
function (see Section Z2573) instead of Equation P4. Therefore, the NAEHGAN has an additional
discriminator network. The feature loss compares inner activations in the discriminator of true
and generated samples. The discriminator loss signifies by how much the discriminator violates
the AN training objective. See Section for more details.

2"2 3 in Figure [Zh
28, 8 latent in Figure [CZa
29«MNIsT-MLAB-factor-1”, “MNI1sT-MLAB-factor-2”, “MNIsT-RLAB-factor-3”
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For the encoder, the KL-term is weighted ten-times more strongly than the feature loss. The
decoder weights the discriminator loss with factor 1 and the feature loss with factor 0.75.

In total, seven VAE-GAN-models are used: “MNIST-NAE-GAN", “dSprites-VAFGAN" and
“CelebA-VAEHGAN". The model structures can be found in Appendix BA3.

Mnist-VAE-GAN MNIsT-VAEHGAN uses an input- and output-size of 28 x 28 x 1. The
model is trained with the Adam optimizer on the MNIST training set with a batch size of 128
and a learning rate of 0.0001 for 200 epochs. The reconstruction loss factor is 10,000. The
latent space is two-dimensional. The inner activation function is ReLU.

dSprites-VAB-GAN dSprites-lGAN uses an input- and output-size of 64 x 64 x 1. The model
is trained with the Adam optimizer on a training set consisting of 90% of the dSprites dataset
with a batch size of 128 and a learning rate of 0.0001 for 200 epochs. The reconstruction loss
factor is 10,000. The latent space is ten-dimensional. The inner activation function is ReLU.

CelebA-NVAE-GAN CelebA-NVAE-GAN uses an input- and output-size of 128 x 128 x 3. The
model is trained with the Adam optimizer on a training set consisting of 90% of the CelebA
dataset with a batch size of 128 and a learning rate of 0.001 with an additional learning rate
decay of 0.02 for 200 epochs. The reconstruction loss factor is 10,000. The latent space is
eight-dimensional. The inner activation function is ReLLU.

3.4.4 VLAE-GAN Models

The VMLAE-GAN-model is similar to the MAEGAN-model in terms of the loss functions. How-
ever, it uses the structure of the MLLAE-model and totalizes the three K L-losses from the
different layers.

The model structures can be found in Appendix [A—4.

Mnist-VLAE-GAN The three MNIST-VLAE-GAN uses an input- and output-size of 28 x
28 x 1. The model is trained with the Adam optimizer on the MNIST training set with a batch
size of 128 and a learning rate of 0.0001 for 200 epochs. The reconstruction loss factor is 10,000.
The latent spaces are two-dimensional. The inner activation function is ReLLU. The model uses
no batch-normalization.

dSprites-VLABE-GAN dSprites-VLAE-GAN uses an input- and output-size of 64 x 64 x 1.
The model is trained with the Adam optimizer on a training set consisting of 90% of the
dSprites dataset with a batch size of 128, a learning rate of 0.0001, and an additional learning
rate decay of 0.01 for 200 epochs. The reconstruction loss factor is 10,000. The latent spaces
are four-dimensional. The inner activation function is ReL.U.

CelebA-NLAB-GAN CelebA-VLABEGAN uses an input- and output-size of 128 x 128 x 3.
The model is trained with the Adam optimizer on a training set consisting of 90% of the
CelebA dataset with a batch size of 128, a learning rate of 0.0001 with an additional learning
rate decay of 0.01 for 200 epochs. The reconstruction loss factor is 10,000. The latent spaces
are two-dimensional. The inner activation function is ReLU.

3.4.5 AlexNet Classifier

The AlexNet Classifier resembles the architecture from Krizhevsky, Sutskever, and Hinton [410].
It uses dropout and a dropout rate of 0.3. The model is trained with the Adam optimizer and
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a learning rate of 0.0001 using batch normalization and a batch size of 32 for ten epochs. The
model structure can be found in Appendix A3

3.4.6 AlexNet-VAE

The AlexNet-WAH resembles the AlexNet classifier but uses a 2000-dimensional latent space
with re-sampling (see Equation EH). For AlexNet-WAH, no dropout is used. The model is
trained with the Adam optimizer and a learning rate of 0.0001 using batch normalization and
a batch size of 32 for 100 epochs.. The model structure can be found in Appendix AG.
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4 Results and Discussion

4.1 Gabor Wavelets in Variational Autoencoders

Simple and cells in the primary visual cortex (MI) show the strongest excitation for Gabor
wavelets (see Section ZAT). As discussed earlier, the optimal stimulus for a convolutional
kernel resembling a Gabor wavelet is a Gabor wavelet itself (see Section Z4=3). Therefore, the
emergence of Gabor-like filters is considered evidence for a models’ biological plausibility [4].
Krizhevsky, Sutskever, and Hinton [40] found that AlexNet learns Gabor-like features in the first
layer. It was later found that supervised convolutional neural networks (CNNs) like AlexNet
explain activity in the inferior temporal cortex (L) [36].

Therefore, the emergence of Gabor wavelets in Variational Autoencoders (MAEs) would be
evidence for their suitability as a model of the visual system. They would potentially even
indicate that higher layers explain higher regions’ activity in the visual cortex. To examine
if MABs or Variational Ladder Autoencoders (MLAHS) learn Gabor wavelets, the following
experiment was conducted (RQ1 a, see Table ).

Since it is known that AlexNet learns Gabor wavelets in lower-level filters, a VAH network with
similar architecture (AlexNet-MAH, see Section B46) was designed. The hypothesis is that if
WVAHSs can learn Gabor wavelets, this model should show them because it is very similar to the
supervised model for which they are learned. First, it was verified that the supervised network
(AlexNet Classifier, see Section BZH) actually learns Gabor wavelets. The network was trained
for ten epochs, the top-1 training accuracy at this time was at 0.85.

Figure IR shows all 288 (96 - 3) convolutional kernels of AlexNet Classifier (see Section BZ73).
In many kernels, Gabor wavelet-like filters emerge.

However, the same effect cannot be observed in the kernels AlexNet-VAH (see Section B4M).
Figure M shows the kernels of the first layer in AlexNet-MWAE. Moreover, no Gabor wavelets
emerged in any of the models® or for any of the datasets.

Therefore, it is concluded that a simple feed-forward VAHs or VILAHs trained to generate dense
representations of static images probably cannot learn Gabor-wavelets. This does not imply that
WVABs or VLLAHs do not explain cortical activity (this is discussed in Section B13). Furthermore,
variations of the MAT}-design are proposed that could lead to a more biologically plausible model
(see Sections BIT and B13).

4.2 Sparseness in Generative Models

One hyperparameter to choose in the different models is the number of feature maps of different
layers. During the implementation, it was observed that some feature maps show little activity
compared to others. As the number of features maps is a model hyperparameter, it was investi-
gated by how much the number of feature maps can be reduced without increasing the network
loss.

Furthermore, sparseness has been found to be used in the visual system. It is therefore investi-
gated (RQL1 b, see Table ) whether the sparseness in VLAESs is related to the sparseness in the
primary visual cortex (see Section ZZ13). Even though MAHEs and NLAEs do not learn Gabor
wavelets in lower layers, they could superpose sparse sets of different basis functions to represent
their input, similar to Olshausen and Field [63]. If they do, this would support the relatedness
of MILAEs to the biological example.

The following experiment was conducted to examine if MILAHES employ sparseness or if the model

39All models described in Section B2 apart from AlexNet Classifier.
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Figure 20: Loss curves of models with different numbers of feature maps (see Section B4T). fm
is the reduction factor of the feature maps; fm = 1, therefore, is the original model, fm = 2
the model with half the number of feature maps, and fm = 3 the model with one third of the
feature maps.

only has too much capacity. First, the feature map activities of MILLAES on MNIST with input
size 28 x 28 and different numbers of feature maps were observed. Then, by gradually decreasing
the network capacity, the evolvement of sparseness were analyzed.

In total, three models (MNIsST-NLAF-factor-1, MNIST-NLAFE-factor-2, and MNI1sT-NLAE-factor-
3, see Section B42) were trained. Batch normalization was disabled for this experiment, because
it re-scales the feature map activities.

Figure 20 shows the training and validation losses for the models. Firstly, increasing the number
of feature maps increases convergence speed. Even though MNIST-VLAF-factor-1 is trained with
a slightly lower learning rate, it converges faster than MNIST-NLAFEHfactor-2 and MNIST-NLAFE-
factor-3. It also achieves the lowest validation loss among the three models and achieves the
minimum validation loss faster than the other models; it is minimal after 26 epochs for MNIST-
VL AFE factor-1, 39 epochs for MNIST-MLAE-factor-2, and 52 epochs for MNI1ST-MLAH-factor-3.
After achieving the minimum validation loss, however, all models overfit. MNIST-NLAE-factor-1
overfits stronger than MNIST-MLAF-factor-2 or MNIST-MLAFE-factor-3, leading to the highest
validation loss after 200 epochs.

Figure P shows the activities of the feature maps in MNIST-MLAE-factor-3. The bias terms
are not considered: If the variations in the less-active feature maps are negligible, the feature
maps carry no information except for the bias term. In that case, it should be possible to
downscale the model without significantly impairing the model performance. Therefore, the
network architecture was changed such that of n feature maps only the L%J maps with the
highest variance of feature map means remained active. Feature maps with lower variance are
deactivated by a custom filtering layer. By appending a custom layer to each convolutional
layer of the original network, the values of the less active feature maps were set to their mean

values (as determined on the MNIST validation set, presented in Figure 21T).

Figure 22 shows the result of the experimental setup for MNIST-NLAE-factor-3%Y. The feature
map activities are high in lower layers. However, in higher layers, they are partially lower
than in the original network (for example in ladder_2_few active_1). In conclusion, activities
of lower feature map are not negligible and cannot be replaced with bias terms because they
influence higher layers.

A two-sided Wilcoxon rank-sum test with Benjamini/Hochberg correction for multiple tests was

31The plots for the other models can be found in Appendix B.
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Model mean (SD) - Original mean (SD) - Deactivated p-value

MNIST-VLAF factor-1 232.759 (8.136) 1190.616 (14.710) < 0.001
MNIST-NLAE-factor-2 208.107 (6.958) 1111.337 (16.326) < 0.001
MNIST-NLAE factor-3 200.258 (6.822) 1106.544 (13.942) < 0.001

Table 3: Reconstruction losses and p-values of the comparisons for the original MNI1ST-MLAHSs
and the versions with deactivated feature maps.

conducted to examine if deactivating feature maps influences the reconstruction quality. The
MNIST validation set was split in 24 subsets and the reconstruction errors for each subset were
compared between the original model and the model with deactivated feature maps. Table
shows the reconstruction losses, their standard deviations, and the p-values of comparing the
different models. The p-values indicate that the reconstructions of the models with deactivated
feature maps are significantly worse. However, the models still reproduce meaningful digits.

In conclusion, the models do not seem to employ true sparseness like the visual cortex does.
Feature maps with small activities contribute substantially to the model performance. Even
though some feature maps are less active than others, they still contribute more than just the
bias term. Since the feature maps are not truly inactive, decreasing the model size does not
lead to more active feature maps. Yet, it helps preventing overfitting.

4.3 Latent Space Entanglement and Categorical Factors of Variation

As discussed in Section P8 and Section P53 (5-MAE), in practice, there is a trade-off between
reconstruction quality and prior-posterior matching. Again, the S-NMAH loss function is defined
as

Eqgy(21z) log po(x|2)] — BDk1(gs(22) || p(2)). (46)

Increasing the weight of the reconstruction term in the NAH training objective (smaller § in
Equation B5%?) leads to reconstructions more similar to the training samples. The posterior
distribution, however, matches the prior distribution less precisely. Contrarily, increasing 3 in
Equation Bf leads to a posterior closer to the prior distribution at the expense of reconstruction
quality. Moreover, Higgins et al. [29] claim that increasing [ leads to a better latent space
disentanglement, i.e., each dimension in the latent space is uniquely correlated with a single
factor of variation.

As discussed in Section 2@, the quality of feature space disentanglement can be assessed by
measuring how fast reconstructions change as the latent space is traversed. Nevertheless, a dis-
entangled feature space should be problematic for datasets with categorical factors of variation,
such as dSprites, where features change fast by definition. Even though CelebA has binary
labels as well (e.g., “brown hair”), there still is enough variation within hair colors to allow a
smooth translation between hair colors [29]. For dSprites, there are only three distinct shapes
(“square”; “ellipse”, and “heart”). To achieve a good reconstruction quality on these shapes,
the model would have to place them in separate areas of the latent space, violating both feature
space disentanglement and a Gaussian posterior.

To analyze how MAHSs behave for categorical factors of variation (RQ3, see Table M), a MAE
with input size 64 x 64 (the size of dSprites images) and a ten-dimensional latent space was

32The B in B-MAE is the Kullback-Leibler (KIl)-term weight. Therefore, decreasing 8 analog to increasing the
reconstruction term weight.
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Figure 23: Posterior distribution of VAH with reconstruction term weight 10,000 on 73,728
dSprites images from the validation set in 100 bins

24490 Samples

10
os
o
o0
: : : EEE I I IR B EIE T B LT B S E 3 -

(a) Latent space distribution of images with shape Square

Shape 2.00, 24756 Samples
5.0im

) Latent space distribution of images with shape FEllipse

MLMMMMJJMMM

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

) Latent space distribution of images with shape Heart

Figure 24: Histogram of dSprites images with a certain shape from the validation set in 100
bins

trained on dsprites with different reconstruction term weights: 10,000, 7,500, 6,250, 5,000, and
3,750 (see Section B21)B3

Figure 23 shows the posterior distributions of dSprites validation images. The ninth dimension
is far less Gaussian than the other nine dimensions. As “object shape” is the only categorical
factor of variation, one could assume that the ninth dimension encodes “object shape”. However,
the graph shows seven peaks in the ninth dimension, while there are only three distinct shapes
in the dataset.

Figure B4 shows the distribution of images with a particular shape. Even though there is some
difference between the plots, the p-values in the ninth dimension still are assigned to different
and distinct areas. The shape alone does not explain the sharp peaks in the ninth dimension.

Consider Figure P4. It shows distributions of images grouped by their scale. Images in dSprites
are scaled by six distinct factors evenly chosen from [0.5;1.0]. The scale values in the dSprites
dataset are six distinct values in the range from 0.5 to 1.0. A MAH model with a too strong
reconstruction term does not learn to interpolate between these values but assigns them distinct
areas in the latent space.

Grouping images by their scale and shape explains the distinct peaks in the ninth dimension
(see Figure PH). Each shape has a distinct peak in the ninth dimension. However, the peaks
of shapes FEllipse and Square superpose. When plotting all three shapes together, a small peak

331t was first empirically validated that a reconstruction term weight of 10,000 leads to good reconstruction.
The other values were chosen by reducing the reconstruction loss term by 1,250 for each model with a larger
initial difference (10,000 vs. 7,500).
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Figure 25: Posterior distribution for dSprites images with a certain scale from the validation
set in 100 bins
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(¢) Latent space distribution of images with scale = 0.5 and shape Heart

Figure 26: Posterior distribution for dSprites images with scale = 0.5 and different shapes from
the validation set in 100 bins
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Figure 27: Latent space traversal between latent space representations of images with certain
shapes for 10,000-MAH. Color-values were inverted for this plot.

(Heart) and a big peak (Ellipse and Square) can be observed.

Furthermore, the model seems to learn a hierarchical clustering in the ninth dimension. Shape
appears to be a sub-cluster of Scale. This sub-clustering leads to highly entangled latent space
and a highly un-Gaussian distribution. However, it allows us to violate the K[-term in favor of
the reconstruction term in just one instead of two dimensions.

Figure 22 shows generated images for a latent space traversal between different shapes®. For
the plot, the latent representations z1, zo were obtained for two x;s with identical parameters
except for the shape. Figure B4 shows the reconstructions of 21 evenly spaced points on the
line segment between z; and zs. It shows the high degree of latent space entanglement: sudden
position changes (Figure 7a) or the sudden emergence of new objects (Figure 62d).

Obtaining z by fixing only the shape and the scale for an x; and averaging over all other
configurations was unsuccessful. Based on the cluster analysis, not fixing the scale would easily
result in regions with low probability density. It leads to empty images as it probably leads to
z;s in regions of the latent space with low probability density. Furthermore, for the latent space
traversal shown in Figure P74, it was possible to always find parameter combinations for which

34The corresponding plots for the other model can be found in Appendix .
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Figure 28: Posterior distribution of VAE with different reconstruction terms weights for 73,728
dSprites images from the validation set in 100 bins

the traversal lead to empty images in the middle of the line segment.

Figure B8 shows the latent space distribution of NAHs with a reduced reconstruction term weight,
i.e., an increase in Kullback-Leibler divergence (KL-d gencd) term weight. The histograms
are more Gaussian, and the on the validation set decreased from 22.744 (10,000-
VAH) to 22.271 (7,500-MAH), 19.399 (6,250-NAE), 18.172 (5,000-VAH), and 16.018 (3,750-VAH).
The difference between 10,000-8AH and 7,500-MAH is small on the validation data, whereas the
decrease in is higher for 6,250-MAE], 5,000-MAHE, and 3,750-VAK.

To quantify the level of latent space disentanglement, the perceptual path length (PPL) (see
Section 28) for the latent spaces of the MAEs (10,000, 7,500, 6,250, 5,000, 3,750) is computed.
The perceptual loss is obtained by a ICNN, trained to predict dSprites object categories®™. The
PPT] was computed for 50 different random seeds. Fach of these PPT}l-computations interpolated
at 100 random steps (dependent on the random seed).

Table @ shows the mean PP values and their standard deviations. A two-sided Wilcoxon rank-
sum test with Benjamini/Hochberg correction to account for repeated testing for the differences
in the models’ PPIs yielded significant p-values < 10727 in all cases.

Moreover, the 10,000-MAEs’ PPT is lower than for 7,500-MAE or 6,250-MAHE. This can be
explained by the vast regions of low probability density in the posterior distribution. For 10,000-
VA, it is likely to produce images that are almost entirely black for some random point in the
latent space. Only a few regions in the latent space produce reasonable images. A neighboring
point in the latent space will probably also produce a black image, leading to a low perceptual

35The model architecture can be found in Appendix [, the features are extracted in “conv2d_ 94”. The model
was trained for one epoch using categorical crossentropy with the Adam optimizer with an initial learning rate
of 0.1. The model achieved a top-1 accuracy of 0.8 on the validation set.
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Model mean PPI] standard deviation

10,000-MAH 936.257 779.098
7,500-VAH 2834.674 567.933
6,250-VAH 4498.156 1091.255
5,000-VAH 173.533 35.896
3,750-MAH 258.326 49.117

Table 4: Perceptual path lengths for the different models latent spaces

loss. As the reconstruction term weight is lowered (7,500-MAH and 6,250-NAH), the probability
of generating some image and, therefore, the PP increases. For 5,000-MAH and 3,750-MAH,
finally, the latent space is sufficiently disentangled. This likewise leads to a low [PPL], but this
time due to an actual disentanglement rather than large regions of low probability density.

The standard deviation of the PPIls supports this interpretation. Consider 6,250-MAH. Here,
generating some image for a random point in the latent space is already quite likely. Nevertheless,
there are still “enough” regions producing black images. For these black regions, the PPI] is
low, just like for 10,000-MAH. Contrarily, for the points producing images, the [PPI is high,
because the latent space still is entangled. This causes a high standard deviation.

The previous observations have essential implications for the application of the BPL. First, the
latent space needs to be approximately Gaussian for the PPI] to produce interpretable results.
This could be measured in terms of or by a visual analysis (as conducted for
Figure 23). Second, if the latent space is Gaussian, the standard deviation should be observed.
A high PPT] standard deviation is evidence that there are regions of low probability density in
the latent space.

4.4 Latent Space Analysis

VAHESs and MILAHs force the latent space to approximate a standard normal distribution. How-
ever, latent space disentanglement (see Section Z8) and latent space separability (see Section 2Z1)
require the latent space also to learn factors of variation in different (linear) sub-spaces. The
following sections explore feature learning in the latent space and answer to what extent MAES
and VL ATHSs satisfy the requirements of latent space disentanglement and separability (RQ2, see
Table ).

4.4.1 Latent Space Embeddings

Mnist Figures and BO show the latent spaces of NAH and MLAH trained on the MNIST
dataset (MNIST-NAE and MNIST-NLAT, see Section 84)%, For MNIST-NAE, there is only one
latent space, while there are three for MNIST-WLAH. The embeddings are colored by different
factors of variation, employing information from Morpho-MNIST (see Section B=34) and the
digit identity information provided by MNIST itself.

As discussed in Section P23, the MLAH aims at learning “hierarchical disentangled represen-
tation” [75]. According to Zhao, Song, and Ermon [75], the lower embedding layers of such a
model trained on MNIST (see Section B=33) encode features such as stroke width, digit width,
and digit tilt, whereas the highest layer should mainly learn high-level features like digit identity.

Incorporating the additional labels provided by Morpho-MNIST, we can analyze to what ex-
tent the lower layers learn which morphological features of MNIST (RQ4, see Table M). The

36Plots for the other models can be found in Appendix ET.
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Figure 29: Latent space colored by different means of MNIST-NAH

morphological attributes, however, are not equally distributed for all digits. The mean stroke
length and the digit width, for example, have a low mean value for the digit “1” (see Figure [3).
Therefore, it should be possible to almost uniquely identify digit “1” by just considering the
stroke length or the digit width. Other attributes, such as stroke thickness, digit slant, and
digit height, are more evenly distributed (see Figure [5).

Figure shows the embedding layer z; colored by digit slant. Figure [[3 shows that the mean
of the attribute slant is quite evenly distributed. The color gradient in Figure BUa, therefore,
indicates that the VLAE learns the morphological attribute instead of just showing the class
identity, encoded using another morphological attribute that correlates with class identity.

For Figure BOE, the situation is different. The noticeable dark-purple cluster in the top left
correlates with dark-purple points in Figure that encode images with label “1”. For digit
width, however, “1” is an outlier (see Figure [H), and a small digit width, therefore, is a reliable
indicator for a digit identity of “1”. Nonetheless, overall digit identity does not seem to be
encoded strongly by z; (see Figure BUg).
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Figure 32: t-distributed stochastic neighbor embedding (E=SNH)-reduced Latent Space of a
VLAE trained on CelebA, colored by curated Factors of Variation (present or not present)

Digit identity seems to be learned in z; and z3 (see Figures and BUH). However, learning
one factor of variation in two layers would be a contradiction to [75], postulating that different
factors of variation a learned in different layers. Albeit zo has some influence on digit identity,
this effect is not nearly as prominent as for z3 even though the clustering in Figure seems to
be almost as good as in Figure BO. It seems that the digit identity learned in z5 only supports
the model generation but has a far weaker influence than zs.

All in all, MTZAH does not seem to learn entirely separable representations. However, the (less
powerful) network below z; indeed seems to learn lower-level representations that are employed
when generating new images (see Figures and B6H).

For MAE, digit identity defines the shape of the latent space (Figure P9g), leading to more
prominent “main clusters.” As WAH only has one latent space, it employs subspaces to learn
the lower-level factors of variation, such as slant within the main clusters (Figure 29a).

The MAH seems to learn an efficient encoding of most of the factors of variation as revealed
by this kind of visualization even though it has a narrower information bottleneck with a two-
dimensional latent space compared to the three two-dimensional latent spaces of N1 AE].

CelebA The CelebA dataset provides binary labels for factors of variation. Figure Bl shows
the distribution of the different features in the dataset. Figure B2 shows the E=SNHE-reduced
latent space of a CelebA-NTAH (see Section BZ=2). A green dot in the latent space indicates
that the feature is present for the data point, a red point indicates that it is not present®Z.

The latent space plots allow to analyze which features are learned in which layers. For example,
hair color is mainly learned in the first and second layers (see Figures BZa and B2H) because
green and red dots build clusters within these layers. Other features do not seem to be learned
at all (see Figure B2d).

Unlike dSprites and Morpho-MNisT, CelebA provides only binary attributes. This limits the
latent space analysis because no gradients can be shown. Furthermore, the models learn factors
of variation that are not present in the labels (see Section BA2).

3"The plots for all models and all factors of variation can be found in Appendix E-3.
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Figure 33: E=SNE-reduced latent space embeddings colored by different means of dSprites-MAE-
dim6

dSprites The latent space embeddings for the

dSprites dataset allow a detailed comparison of MVAH ——
and MLAH. Here, the dSprites-VAH-dim6 model s e
(see Section BZT) was given a six-dimensional embed- WergEaves
ding space, whereas the dSprites-NVLAE-dim2 (see Sec- S o
tion BZ72) model has three two-dimensional embedding mi;;:mq
spaces®®. The MAH and NLAE approximately have the fecsangronine
same model capacity under the assumption that VLAE oot
uses lower embedding layers to learn lower-level features "EZN:"':::":
and higher embedding layers to only learn higher-level Mwms"v":;;fi
features and that the dataset can be split in this way. o e
The MLAH latent spaces were chosen with two dimen- o
sions to allow for a direct visualization of the latent DZZEZ:EZ
space without dimensionality reduction. As the NVAH E""";:;:’::’E
model employs a higher-dimensional latent space, the oy
embeddings are visualized using E=SNH embeddings (see o
Figure B3). B::%’
One advantage of dSprites over MNIST is that all fac- gd‘;"b,:
tors of variation are independent by design and appear ooy
equally often, allowing a more straightforward analysis. 00 o2 ot ds o8 1o

The VAH builds main clusters and seems to embed the Figure 31: Distribution of the Binary
lower-level features into main clusters. Especially the Factors of Variation in the CelebA
object scale seems to be a lower-level feature (see Fig- dataset. The green bar shows the frac-
ure B3H). Only object-orientation does not seem to be tion of the images where the attribute

learned at all (see Figure B3d). is present, the red bar where it is not
dsprites-VLAE-dim2 (see Figure B4) is worse compared present.

to dSprites-VAE-dim6. The model learns main clusters, especially for object position (see
Figures and BZ4d). Furthermore, the model learns the object scale (see Figure B4l and B4g).
Apart from that, the model does not seem to learn other factors of variation. The representations
are not particularly disentangled. Object position and scale are learned in all layers, but best
in z3.

After training 200 epochs, dSprites-VAE-dim6 achieved a loss of 21.638 (reconstruction loss:
6.375, KL-loss: 15.264). In contrast, dSprites-VLAE-dim2 achieved a loss of 47.860 (reconstruc-
tion loss: 32.813, KL-loss: 15.047).

All in all, using a VAH with a higher-dimensional space seems superior to the NIAH in terms

38Plots for the other models can be found in Appendix E2.
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(a) Latent space z; (b) Latent space z; (c) Latent space z; (d) Latent space z; (e) Latent space z;
colored by object colored by object colored by object colored by object z- colored by object y-
scale orientation position position

(f) Latent space zy (g) Latent space zo (h) Latent space zo (i) Latent space zo (j) Latent space zo
colored by object colored by object colored by object colored by object z- colored by object y-
shape scale orientation position position

(k) Latent space z3 (1) Latent space z3 (m) Latent space z3 (n) Latent space z3 (o) Latent space zs
colored by object colored by object colored by object colored by object x- colored by object y-
shape scale orientation position position

Figure 34: Latent space colored by different means of dSprites-NVLAH-dim2

of encoding efficiency.

4.4.2 Latent Space Explorations

A latent space exploration is one way to see if and how a model learns a general representation of
the dataset. Different from the analysis conducted in Section B4, reconstructions for defined
positions in the latent space are analyzed. Especially for ML AES, it also allows to examine if
different attributes are learned independently in different layers (RQ5, see Table ).

Mnist Figures B3 and BG show the latent space traversal of MNIST-IVAH (see Section BZT),
MNiIsT-VAE-generative adversarial network (GAN) (see Section B4-3), MNIST-NLAH (see Sec-
tion B272), and MNIST-VLABIGAN (see Section BZA2). For the models with only one latent
layer (MNIST-VAH and MNIST-VAB-GAN), the plot is generated by traversing the latent space
in equal steps from z; = —3 to z; = 3 in both dimensions. For the hierarchical models (MNIST-
VLAE and MNIST-VLAE-GAN), one z-layer was fixed and traversed in the same way. The
values of the other z-layers were obtained by sampling from a uniform distribution over [—3; 3].

First, most models properly employ the latent space: the traversal shows almost no non-
representative generated images, with a few exceptions for MNIST-MLAH and Mni1sT-MLAE-
GAN. Noteworthy, these non-representative images mainly occur on the borders where the
variance is high. The models were trained such that the latent space is standard normal, the
latent space traversal, however, goes from -3 to 3, in areas with low probability density. In such
areas, unrepresentative generations are no model failure.

Morpho-MNIST allows for another kind of analysis: By incorporating information of lower fac-
tors of variation, latent space trajectories for particular factors of variation can be calculated.
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Figure 36: Latent space exploration for VLAE models on MNIST. The original images have

z-dimension. The other z dimensions are sampled uniformly over [—3; 3]
been inverted for the purpose of this figure.

(b) VLAE-GAN latent space exploration from z;
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Figure 37: Mean latent space values for MNIST-VLAE when fixing different factors of variation
from Morpho-MNIST
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Consider Figure B7%9. Each sub-figure shows the latent space values for MNIST images, predicted
by the MNIST-WLAH when fixing one Morpho-MNIST attribute and averaging over the others.
The value range of each Morpho-MNIST attribute was divided into 50 evenly-sized bins, and the
MNIST images were assigned to these bins based on the value of the corresponding attribute.
Single bins can contain no values if no MNIST image has an attribute value in the corresponding
range. The z-predictions within one bin are averaged. Each column in a sub-figure in Figure B4
corresponds to one layer of WILAH (the first column corresponds to the first layer, etc.). The
second row in each sub-figure shows the mean latent space position for each bin. The bins are
ordered, increasing color values correspond to increasing attribute values as indicated by the
respective color bar. The first row shows the latent space position for each dimension separately.
The z-axis corresponds to the ordered bins.

If one layer does not learn a particular attribute, its value should not change much while the
attribute values are varied. For example, this can be observed in Figure B7f on layers two and
three. Even though the latent space values of layers two and three are non-stationary for high
thickness values, this can be attributed to the few images of a high thickness (see Figure [3).
Averaging over latent space positions if images with high thickness is less precise since only few
images contribute to the mean value on the “high-thickness-bins”. This can also be observed
for layer one in Figure B7f. Apart from this explainable non-stationarity, only layer one seems
to encode thickness, as it is the only layer showing a trend for this attribute. This is supported
by Figure BBa, where thickness increases along the trajectory in Figure B7f. Another example
is the slant (Figure B7Zd). The slant-trajectory is almost orthogonal to the thickness-trajectory
(see Figure BBa).

However, many attributes do not seem to be learned in one layer. For example, the values of
layers two and three are highly non-stationary for digit identity (Figure B7d). This indicates
that digit identity is jointly learned in both layers. Figure BGa supports this. Traversals in both
layers seem to influence digit identity, but there is still much variation within subregions. The
same holds for other attributes (area, height, length, and width).

In conclusion, MNIST-MLAE succeeds in learning separable representations in some cases but
also fails in other cases. A low variation of values within a layer when changing an individual
factor of variation indicates that this layer does not learn this factor of variation. Although
the layer could, inherently, learn an attribute and be overruled by the higher layers during
reconstructions, this does not seem to be the case. The NLAH, in this regard, uses the latent
space efficiently, as observed by jointly studying Figure B and Figure BGal.

CelebA Figure B8 shows the latent space exploration of CelebA-NLAEHGAN model (see Sec-
tion BZ4)). The model was generated by evenly interpolating in [—3;3] in the respective layer
and by sampling from a uniform distribution over [—3; 3] for the other layers. Similar to MNIST,
the model learns different factors of variation on different layers. The first layer mainly learns
skin color, layer two hair color, and layer three pose and background color. Importantly, the
model learns only a few factors of variation due to the small latent space dimensionality.

As discussed in Section P53, feature consistency is an important property of MAHs. It was
empirically evaluated if the ZAH models have the same property. Figure B9 shows the transition
between black and blond hair, and female and male for a /AH trained on ImageNet.

To generate the plots, the mean vectors of the different factors of variation (male, black hair,
etc.) were obtained by predicting the posterior for corresponding images from CelebA. Then,
for Figure BY9a, a random latent vector v; with “black hair” was chosen from the dataset.
The transition was then generated by choosing different values o € [0,2] in the operation

39The corresponding figures for the other models can be found in Appendix E
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Figure 38: Latent space exploration of CelebA-VLAE-GAN. Each of the three columns shows
the exploration for the corresponding layer. Layer one mainly encodes skin color (gradient from
darker to brighter skin color from top left to bottom right). Layer two mainly encodes hair color
(gradient from darker to brighter hair color from left to right). Layer three mainly encodes pose
and background color (top left and bottom right: right-oriented, top right: left oriented, center:
more colorful background colors).
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(b) Female to Male

Figure 39: Interpolating between latent factors of variation in a VAE latent space, trained on
CelebA
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Figure 40: Latent spaces traversal between different rotation values for 10,000-VAE on the
dsprites dataset
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Figure 41: PCA-transformed latent space positions of different dsprites shapes with a fixed
position, averaged over scales and a 10,000-VAE where only rotation is changed between objects.
Increasing color values correspond to an increase in rotation.

v1 —v(black hair)+aw(blond hair). For Figure BAH, a random image was generated by sampling
vg ~ N (0, I). The transition was then generated by vs + aw(blond hair) with « € [0, 4].

Even though larger values of a are required to obtain meaningful translations, the latent space
has the discussed semantic property. The same holds for CelebA-NMAE-GAN.

dsprites Section =3 discusses the latent space of dSprites-VAHEs (see Section BZA=3). One
conclusion is that MAHs on dsprites do not learn a smooth transition of different scales. A
transition between different shapes, however, is possible.

Figure B0 shows the latent space exploration between different rotation values of 10,000-MAE1Y
with a reconstruction term weight of 10,000 on the dsprites dataset (the plots for the other
models can be found in Appendix E). The 10,000-MAH learns a transition between different
rotation values. This also holds for the other models (7,500-, 6,250-, 5000-, 3750-NAH, see
Appendix [E). However, how are the different rotation angles represented in the latent space?

Figure B0 shows the latent space position of an ellipse with a fixed position, averaged over

40¢«(Sprites-MAE”, see Section BZl
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Figure 42: Latent space of 10,000-VAE trained on dsprites. Different values are either for
different x-positions or for different y-position. The other position is fixed to 1.0. It is averaged
over all other parameters.

o L * . L

. * * L g [ J

Figure 43: Linear interpolation between top-left and bottom-right 7,500-VAE latent space rep-
resentations on dsprites leads to areas of low probability density.

different scales for different rotations. For this plot, the ten-dimensional latent space was reduced
to a two-dimensional using principal component analysis (ECAJ) on the vector values. Only half
(Ellipse and Heart) or one quarter ([Ellipse) of the rotations are shown (i.e., rotations in [0;7]).
For Ellipse, rotations in [m;27] fill the circle a second time because an ellipse is isomorphic
for a rotation by 7. A square is isomorphic for rotations by multiples of 7. For Heart, the
model also fill the circle for a rotation by < 7 even though this shape has no isomorphism for
rotations < 2m. The reason for this behavior is unknown but it is assumed to be caused by the
isomorphisms of the other shapes.

The behavior does not change for the other models (7,500-, 6,250-, 5000-, 3750-\VAE) or different
shapes. Rotations are learned naturally; A circle in the (reduced) latent space corresponds to
a rotation of the object.

A similar behavior can be observed for the position.

The left sides of Figures B2a and B2H show the path in a reduced latent space™. Each arrow
is the difference between two successive x-, or y-positions, mapped into the two-dimensional
space. The path is curved, which is surprising since linear interpolations in the latent space are
known to be successful for natural attributes such as hair color ([56] and CelebA in this section).
Linear interpolation for the position, however, leads to regions of low probability density (see
Figure B3). The right sides of Figures B2a and B2H show the values for the different dimensions
in the non-reduced latent space. Some values almost resemble a sine-curve. This behavior is
qualitatively similar for the other models (7,500-, 6,250-, 5000-, 3750-NVAH).

Like rotation, for which this observation has been reported previously [I3], MAHESs seem to encode
position in a periodic manner.

Regarding the human visual system, a high-level model of the ventral stream should not capture
object position, scale, or rotation at all. Capturing orientation and position of a whole object
is instead a property of the dorsal stream. However, by definition of the loss function®?, NATs
are trained to encode these properties. One way to make WAHs agnostic of these factors is to

“1Plots for the other models (7,500-, 6,250-, 5,000, 3750-MAE, and EZAE-GAN) can be found in Appendix E.)
42This holds for the pixel-wise and the adversarial loss.
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center objects in the picture as in the CelebA dataset. However, even for CelebA, the models
learn head rotation as one factor of variation.

There is no reason to assume that MAHs are a better model of the ventral than of the dorsal
stream. Moreover, VAFs seem to learn positional factors of variation differently from non-
positional ones. For factors of variation such as “hair color” or “gender” (for the CelebA
dataset), a simple linear traversal in the latent space is sufficient to interpolate between these
factors. Positional factors of variation, however, seem to be learned differently. Here, a linear
interpolation is misleading because a highly curved interpolation would be required.

This difference in handling positional and non-positional attributes could be related to the two-
stream hypothesis [25] where the where and what are also treated differently (see Section 271-3).
In any case, it has to be considered in the work with MAHs.

For dSprites-MLAE model, a similar analysis allows to identify which layers encode which factor
of variation™. Figure B4 shows the z values of different layers and dimensions for different factors
of variation of dSprites-VILAH. The third layer seems to encode most of the factors of variation:
x-, and y-position, scale, and shape. Although less strongly, the first and second layers encode
orientation (Figures 0243 and H4H) even though less strongly. Therefore, the representation is
not separated; the different layers do not independently encode different factors of variation,
even though these are, by definition, independent in the dsprites dataset. Independence is
further discussed in Section B=3 using the example of MNIST.

The first and second layers of dSprites-VLAH jointly learn orientation, similarly to dSprites-
VAH. The scale and the z- and y-positions are mainly learned in the third layer. Again, the
latent space trajectories for the x- and y-positions show a curved path, even though less circular
compared to dSprites-’AH. dSprites-NIAH has three four-dimensional latent spaces. However,
the reconstructions, especially in terms of shape-reconstruction, are less precise compared to
the ten-dimensional-latent-space dSprites-NVAH. dSprites-NVLAHSs, therefore, do not seem to use
the hierarchical latent spaces efficiently under all circumstances.

dSprites-WVAE-GAN and dSprites-VLABGAN behave similarly for the considerations in this
section and are therefore not discussed.

By analyzing the latent spaces of different models (MAH and VLAH models) on different datasets
(dsprites and MNIST with Morpho-MNIST), it has been shown that NAE- and NLAHE-models
partially learn curved latent space trajectories for ordered latent space attributes (Figures B4, B2,
and B4). It has empirically been validated that a simple linear interpolation between different
orientation values in the latent space of a MAH trained on dsprites does not capture the learned
“orientation-trajectory”. The latent space is highly entangled for positional attributes, even
if the reconstruction term is extremely low (see Appendix [E). Hence, it is argued that linear
interpolations sometimes do not capture the learned trajectory. Interpolating linearly can lead
to wrong conclusions regarding the model performance.

4.5 Latent Space Separability on Generated Images

The VLAE learns embeddings on different levels. For MNIST, Zhao, Song, and Ermon [75]
use three two-dimensional layers to learn image semantics of different granularity. They claim
that their model can learn disentangled hierarchical features. Figure BGa shows reconstructions
of this model when systematically exploring one dimension and randomly choosing the others.
Evidently, the model can learn disentangled representations to some extent.

For instance, z; seems to mainly encode the digit thickness, whereas z3 seems to encode digit
identity. zo, however, also seems to influence the digit identity. It has been shown that these

43The plots for the corresponding dSprites-MLAF-GAN model can be found in Appendix [E.
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Figure 44: Values of different dimensions and layers in the VLAE latent space for different
factor of variation values (first row in each subplot), and position in a PCA-reduced latent space
(second row in each subplot). The model was trained on dsprites. The left column corresponds
to the first embedding layer, the right one to the third. PCAl was performed separately for each
factor of variation and latent space layer. Different values correspond to different values for
the respective factor of variation. For orientation and scale, the position is fixed to 0.0 in both
directions, shape is fixed to Square. For x-and y-postition, the other position is fixed to 1.0 and
shape is fixed to Square.
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factors of variation are not learned independently in the latent space (see Section B4). However,
a decoder could be able to ignore this redundancy and use only the non-redundant latent-space
information. The following experiment investigates if decoders have this property (RQ6, see
Table ).

Algorithm 1 Generating Layer Representative Samples by Averaging Out Other Embedding
Layers

1: function LAYERREPRESENTATIVESAMPLES(numSamples,numApproximations)
2 7+ 0

3 L+~ o

4: while ¢ < numSamples do

5: v+ v~N(0I)

6 for all j € {1,2,3} do

7 8; < LAYERREPRESENTATIVESAMPLE(v, numApproximations, j)

8 end for

9: ﬁ(—ﬁU{{Sl,SQ,Sg}}

10: end while

11: return £

12: end function

13: function LAYERREPRESENTATIVESAMPLE(fixedDimensionValue, numApproximations, di-

mensionIndex)
14: D+ {1,2,3}
15: a + fixedDimensionValue
16: B < (D \ dimensionIndex);

17: v < (D \ dimensionIndex)s
18 zq +—a~N(0,I)

19: L+ o

20: 10

21: while ¢ < numApproximations do

22: zfﬂ—biNN(O,I)

23: zl —¢; ~N(0,1)

24: L + £ U{ VLAE-DECODER(2q, 2}, 2) }
25: i+—i+1

26: end while

. 1 .
27 return.w| 2L
28: end function

Consider Algorithm m. The function VLAE-DECODER calls the decoder of the MLAE], i.e.,
po(x|z1, 22, z3). Calling the function LAYERREPRESENTATIVESAMPLES returns an ordered set
L of “layer representative samples.” Each sample i contains three items, say x!, 5, x4 that were
created by fixing a value v in Line B of Algorithm 0. “Layer representative samples” means that
for example ! is approximately drawn from the marginal distribution

%‘ZiNPe(’U|21):/ / po(v|21, 22, 23)dz2dz3. (47)
z9 Jz3

Now, if the embedding layers learn disentangled hierarchical representations, pg(x|z1), pe(x|22),
and pg(x|z3) should be pairwise statistically independent:

po(®|zi) K po(e|z) V(i,j):i# j. (48)
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However, this is not true. Choosing a value z; = ¢ such that py(x|z1 = ¢) also leads to a high
value of py(x|z2 = ¢), leading to a violation of Equation BX.

4.5.1 Mnist

Consider Figure E3. It shows results of samples (x},x3),..., (2% 21%) that were generated
by Algorithm M. Thus, the parameter “numSamples” is chosen as 100, and the parameter
“numApproximations” is chosen as 300. Each mf is one generated MNIST image of size 28 x 28
pixels. Each box in Figure B3 corresponds to one of these pixels. The box index corresponds
to the pixel in the MNIST image. The x-values of dots in the same box then correspond
to :UH(&I), . ,:E%OO‘(&I), i.e., the pixel intensities of one specific pixel (here: third row, first
column (3,1)) over all 100 samples for @1, i.e., the sample generated by fixing z;. Analogously,
the y-values of dots in the same box correspond to w%‘(g 1y ,:U%OO‘(?) 1" Each dot corresponds
to one fixed p-value. 7 7

If changing the value of z; is independent of changing the value of z,, the boxes should show no
trend. This is true for outer boxes. Since they correspond to pixel values that always close to
zero. Therefore, the values are in the bottom left corner, and no correlation can be observed. For
center pixels, however, the plot shows something different. They show an interesting correlation
pattern of negative and positive correlations.

Negative correlations for a pixel with index (i, j) indicate that py(z| (i) |z1 = ¢) x L

po(@|, 1:1=¢)’
i.e., choosing a value ¢ that leads to a high (4, j)-pixel intensity for the zj-representative sample
leads to a low intensity of the same pixel of the corresponding zi-representative sample. This,
however, is a violation of equation 8. The correlation only persists for individual pixels.

The behavior is similar for all MILAH models. All plots can be found in Appendix IG.

Figure B8 shows a histogram of Pearson correlation coefficients for the pixel-wise intensities
(compare Figure B3) The correlations are colored by whether the corrected p-values are < 0.05.
Compared to the regular AE-models, the GAN-models learn representations more indepen-
dently in the different layers. This could have two reasons. First, the GAN-models could
disregard the lower layers more strongly than the non-lGAN models, effectively using only the
third layer which is closest to the output layer. Second, the GAN-models could in fact learn
more independent representations in terms of image generation. It is probably not the case that
the GAN-models disregard lower layers, because they seem to incorporate lower-layer informa-
tion for the generation of new images (compare Figures and [73). Therefore, it is assumed
that the discriminative loss leads the decoders to factoring out redundant information in the
latent space layers to a higher degree.

4.5.2 dsprites

Consider Figure B4 showing the histograms of pixel-wise intensity correlations. The Figure
supports the reasoning of the previous paragraph, i.e., that the GAN-generated images are
more independent in terms of pixel-wise intensity correlation.

4.6 Pixel-wise Distribution of Generated Images

GANSs (see Section ZZ53) are trained by simultaneously training a generator to create new
samples and a discriminator to discriminate between real and generated samples. MAFS are
not forced in the same way to create indistinguishable samples. Instead, a reconstruction loss is
used to force the reconstruction to be close to the real sample in terms of pixel-wise difference.
Simultaneously, the KI-loss and the reparametrization trick force the model to place similar
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Figure 46: Histogram of correlations of pixel-wise intensities when fixing different pairs of
dimensions for MNIST-MLAE and MNIST-VLAEGAN. Each value in the histogram is the
Pearson correlation coefficient for one pixel of a generated dsprites image (compare Figure B3
showing the correlations in the case of MNIST). The histogram is colored by whether the
correlation is significant (Hp: The absolute correlation is equal to the absolute correlation of

samples with zero correlation) at a 95% confidence level. The p-values have been corrected by
the Benjamini/Hochberg method.
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Figure 47: Histogram of correlations of pixel-wise intensities when fixing different pairs of
dimensions for dSprites-VLAE and dSprites-VLAE-GAN. Each value in the histogram is the
Pearson correlation coefficient for one pixel of a generated dsprites image (compare Figure B3
showing the correlations in the case of MNIST). The histogram is colored by whether the
correlation is significant (Hp: The absolute correlation is equal to the absolute correlation of

samples with zero correlation) at a 95% confidence level. The p-values have be corrected by the
Benjamini/Hochberg method.
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Model p-value (mean) p-value (sd) p-value (skewness) p-value (kurtosis)

VAH < 0.001 < 0.001 < 0.001 < 0.001
VLAH 0.439 < 0.001 < 0.001 < 0.001
VABE-GAN < 0.001 < 0.001 < 0.001 < 0.001
VILABGAN < 0.001 < 0.001 0.023 0.227

Table 5: p-values of a Mann-Whitney U test. Each cell tests the hypothesis that the respective
moments for the respective model are equal to the values for the MNIST test images. For each
cell, the sample size was 2 - 10, 000.

samples close to another in a continuous Gaussian embedding space. Therefore, drawing from
the Gaussian embedding space should allow us to generate new samples similar to real samples.
However, the question remains how indistinguishable these generated samples are from actual
samples and whether MAE-models resemble the data distribution (RQ7 and RQ8, see Table ).

Different statistical analyses were performed to address this question, revealing that generated
samples can be correctly distinguished from actual samples.

4.6.1 Mnist

The following procedure was applied to generate samples for different models. One part of the
VAT loss function (and of the other models) is the KIL-term, forcing the models to match a
standard multivariate normal distribution. The learned distribution, however, is not perfectly
Gaussian because of the other loss function terms. Therefore, the models’ encoders first was
used to predict the mean values in z-space for the 10,000 validation images of the MNIST dataset.
Subsequently, for each dimension, kernel density estimation (KDE) was performed to estimate
the probability density function (PDH) of the latent space for MNIST-VAH and MNIST-VAE-
[GAN. Since the learned distribution, by definition, is covariance-free, the KDE was performed
for each dimension separately. The estimated PDDE was then used to generate 1,000 new images
to perform the statistical analyses. Figure B8 shows the estimated KDE for MNI1ST-NVLAE-GAN),
plots for the other models can be found in Appendix HI.

MnNI1sT-VLAH and MNI1ST-VLABE-GAN cannot sample independently from the different latent
spaces (see Section BH). For these models, the predicted mean values were directly used to
reconstruct 10,000 images.

The MNIST test set of 10,000 images was compared to a 1,000 generated samples from MNIST-
WVAH, MNIisT-MLAE, MNIST-NWAHIGAN, and MNIST-NLAHGAN according to the estimated
posterior. First, the mean pixel values, i.e., the mean over all 28 x 28 pixel values, were
compared (see Figure B9). The plot overlays the histograms of mean pixel values for the five
conditions: MNi1sT, MNIST-NVAE, MNIST-VABE-GAN, MNIST-MVLAH, and MNIST-VLAE-GAN.
The other plots in Figure B9 were created accordingly but for higher moments of the pixel value
distributions.

Consider Figure B showing the same distribution but for the standard normal prior. The pixel-
wise statistics are quite different compared to Figure B9 and resemble the true distribution less
precisely. The aforementioned procedure is crucial when evaluating a model. Sampling from
the prior leads to worse model performance in resembling the data distribution.

Figure 09 leads to the assumption that all models learn the pixel distributions to some extent.
The overlap of the histograms is high for all models. Table B shows the results of a two-sided
Mann-Whitney U test for the samples of moments of the pixel distributions. The results lead
to two conclusions: (1) The NLAE-models capture the statistics of the pixel distribution better
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Figure 48: Histogram of mean z-values for different layers and dimensions of MNIST-VLAE-
GAN (blue), the result of the KDE (green), and a standard normal distribution (orange). Ad-
ditional plots can be found in Appendix H.
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Figure 49: Pixel-wise distributions of different models and moments for the MNIST validation
data set. Each sub-figure shows the distribution of the corresponding (normalized) moments.
Each moment is calculated for the distribution of each pixel for multiple images. For MNIST,
28 - 28 moments are calulated.
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Figure 50: Pixel-wise distributions of different models and moments for the MNIST validation
data set with a standard normal posterior. Each sub-figure shows the distribution of the corre-
sponding (normalized) moments. Each moment is calculated for the distribution of each pixel
for multiple images. For MNIST, 28 - 28 moments are calulated.
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Figure 51: Pixel-wise distributions of different models and moments for the dsprites validation
data set. Each sub-figure shows the distribution of the corresponding (normalized) moments.
Each moment is calculated for the distribution of each pixel for multiple images. For dSprites,
64 - 64 moments are calulated.

compared to the MAE-models. (2) None of the models captures the true pixel distribution
(rejection of Hy: “The distributions are the same.”).

To verify that none of the models generates indistinguishable samples, a discriminator network
was trained to distinguish generated samples from true MNIST test images™. The discriminator
network shows an accuracy of 1.0 for distinguishing for all models, i.e., it is perfectly able to
predict generated from true samples for all models.

Comparing the pixel-wise statistics between generated (according to the KDE procedure ex-
plained above) and reconstructed samples furthermore showed that there is a significant dif-
ference (p < 0.05, two-sided Mann-Whitney U test) even though the difference between the z
distribution of encoded validation images and zs sampled from the estimated posterior is not
significant (p < 0.05, two-sided Mann-Whitney U test). The reason for this is assumed to lie in
samples for which the encoder predicts very low values log o that have been observed during
training. Enforcing a lower bound for logo? in the encoder could prevent this.
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Model p-value (mean) p-value (sd) p-value (skewness) p-value (kurtosis)

VAH < 0.001 < 0.001 < 0.001 < 0.001
VLAH < 0.001 < 0.001 0.091 0.005
VAR GAN < 0.001 < 0.001 <0.001 < 0.001

VLAB-GAN < 0.001 < 0.001 0.005 0.061

Table 6: p-values of a Mann-Whitney U test. Each cell tests the hypothesis that the respective
moments for the respective model are equal to the values for the dsprites test images. For each
cell, the sample size was 2 - 1,000.
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Figure 52: Distribution of generated class labels for different models.

4.6.2 dsprites

Figure BT shows the pixel-wise distribution for the dsprites dataset. The NLAFE-models (dSprites-
VLAE and dSprites-VLAEGAN) employ a four-dimensional, the MAE (dSprites-VAE and
dSprites-VAE-GAN) a ten-dimensional latent space. Again, the NLAHE-models better capture
the true distribution. However, all distributions differ significantly from the true distribution
(see Table B). The KDE distributions can be found in Appendix H2.

4.7 Class-Distribution of Generated Images

Do the VAH and VL AH models generate each number with the same probability as a numbers’
probability in the training set as required by latent space disentanglement (see Section Z6)? To
answer this question (RQ2, see Table M), the following procedure was applied.

First, let each model generate a large number of images by drawing the latent space variable(s)
z from their estimated posterior (see Section B for details). Second, let a classifier classify
each generated image. This procedure was applied to MNIST only. It is the only labeled dataset
where the VAHs and VLAHSs models have shown a promising performance.

Figure B2 shows the class-distribution of generated images. Even though it is sampled from the
(estimated) posterior, the class distribution is quite uneven. This aligns with Figures B3 and B8,
showing that the model maps some digits to very small subspaces. Why this happens, however,
remains unclear. If there is less variation for a particular digit, i.e., the digit three is written
very similarly in all cases, then all models should map threes to small subspaces. However,
MNIsST-AE reproduces few threes whereas MNIST-NAB-GAN produces few fours. Overall, the
WL AE models generate a more even distribution of generated digits.

Figure b3 shows the distribution of morphological attributes for generated digits. The Figure
is created accordingly to Figure I4. The bottom row in Figure I3 is equivalent to the top row
in Figure b3.

For most attributes, the MILAHF models learn a smooth distribution that approximately resembles
the true distribution. However, they fail in generating the same proportion of digits with a small

4 The configuration of the discriminator network can be found in Appendix I. The network was trained using
binary cross entropy for one epoch using the Adam optimizer with a learning rate of 0.01.
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Figure 54: The original image and the feature maps after passing the image through the network
until after the specified layer. The stripe artifacts can be observed in many feature maps in
Figure B4H. They vanish after max-pooling (Figure b44).

width (i.e., the digit one). The NAE model (but not MAE-GAN) is more successful in that regard.
However, the MAH distributions are less smooth compared to the ML AHE models.

4.8 Feature Map Stripes

One observation made during the analysis of the networks was the emergence of striped artifacts
in the networks’ feature maps (Figure B4). These stripes were observed in the AlexNetVAE on
ImageNet. The stripes are either always horizontal or vertical for one network type. If they are
vertical, they can appear on the left or right sides for the same network. If they are horizontal,
they appear either on the top or on the bottom of the same network. The exact reason the
networks show this behavior was not found, but it is assumed to be a combination of the
following considerations.

Kernel Size The stripes were only observed for large kernel sizes. AlexNet Classifier and
AlexNet-l/AE use 11 x 11 kernels in the first layer. Using such large kernels with zero-padding
(see next paragraph) causes the convolution operation to incorporate many zero-terms. For fea-
ture map pixels at borders and especially in corners, only a few non-zero values are contributing
to the convolution. This results in overall low feature map values for these pixels.
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Figure 55: The test images used to analyze the networks behavior.

Padding The stripes occur due to the zero-padding in the network and the resulting contrast
observed by the convolutional filters. Take Figure bd. Here, the stripes appear most evident on
the bottom left of the image. The stripes indicate less active regions in the feature map: The
feature map has an activity of around zero everywhere except for the location of the stripes.
Here, the activity is strongly negative.

A comparison with the original image (Figure B4a) shows that for the left side of the image,
the contrast is highest on the bottom if the image is zero-padded®. The contrast is high on
the bottom of the image, the right side, and the right side of the top of the image. However,
for this network, the stripes seem to occur for a sharp shift of black on the left to white on the
right.

To better understand the behavior, the network was applied to a set of artificial test images
(Figure B3).

Figures BAi and BBl turn out to be most insightful. Figure B8 shows the feature map after the
last LeakyReLU (LeakyReLU 5) activation of the network given Figure bai (Figure bGa) as well
as the feature map after max-pooling of this feature map (Figure B6H). Figure bGa allows for
multiple observations. Firstly, the feature map in the first column of the fifth row resembles
the input stimulus itself. The fact that this feature map shows most of the activity (especially
after max-pooling, see Figure B6H) has been observed for natural images as well, however not
the resemblance of the input stimulus. Except for this feature map, stripes emerge either on the
bottom of the left side or the bottom of the right side of the feature map. The sharp black-white
contrast at the bottom of the left side. The bottom of the right side is more complicated. Here
the test image was black, and the “contrast” is a black-black contrast - or no contrast. However,
this is only true for the first feature map”®. The following feature maps, again, are zero-padded.
However, due to the bias term in the convolutions, these might be non-zero in the bottom-right
and top-left square of the image, thus leading to a contrast. This explains why the network
can be sensitive towards these black-black contrasts in the input image. If the bias term in the
convolutions is removed, the black-black contrast sensitivity vanishes because the network is
not anymore able to add a constant to the black pixel values on the bottom-right or top-left of
the image. For this purpose, the batch normalization has to be removed, too, since it uses a
bias term. This, however, does not qualitatively change the networks’ behavior on real images.

Network Depth As explained above, the emergence of feature maps is an amplifying process.
Low-developed feature map stripes in lower layers lead to highly developed feature map stripes
in higher layers. This effect was, to the best of the authors’ belief, not reported previously. It
seems to have no significant influence on network performance. However, it could, depending
on the implementation, lead to a loss of precision as feature maps contain very different float
values. Floating-point representations then need a larger exponent and have less storage for the
mantissa.

Dataset The stripes were observed for the ImageNet dataset but not for CelebA. For CelebA,
AlexNetVAE was able to reproduce and generate good images. For ImageNet, however, the

45Zero-padding can be understood as adding black pixels around the image.
46The first feature maps are not shown here.

73



ENEESEEEEESEEEEEEEEEEESEEE
e bl b Pr e lor i
e b rErr Prr T dr i
ENESEENEEEEEEEEEEEEEEEEEE
ASEEEEEEEEESEESEENENEEEEEE
vt e P dd
AlESEEEEESEEEEEEEEEEEEEEEE
AElEEEESSEEESEEEEEEEEEEEEEE
AlEEESSEESESEEEEEEEEEEEEEEE
IS EEEEEEEEEEEEEEEE

e errrrrrr P rr T
SANEESSESEEEEEEEEEEEEEEEEE
eyt rer P Err P Er T
et e P lor e
ASEESSEEEEESEESEENENEEENEE
IS SEESEESSEEEEEEEEEEEE
AlESEEEEESEEEEEEEEEEEEEEEE
AlEEESESEEESEEEEEEEEEEEEEE
AlESSSSEEESEEEEEEEEEEEEEEE
IEESFEEESEEEEEEEEEEEEEEEEE

(b) The feature maps after LeakyReLU 5

(a) The original image.

Figure 56: The feature maps with respect to test image BAhi.
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network produced and generated blurry images that are only remotely related to the training
data. It is therefore assumed that training on ImageNet leads to a high reconstruction error
and, as a result of this, to large gradients for the whole training time. Together with the
previous considerations, such high gradients are assumed to lead to the feature map stripes.
They probably lead to more extreme weight configurations than for non-failure modes (e.g.,
CelebA).

4.9 Pixelwise vs. Adversarial Loss

This thesis employed two different methods to train the decoder to generate natural-looking
images, namely the pixel-wise or the generative loss. Furthermore, the encoder of the genera-
tive models was trained such that the hidden-layer activity of the discriminator is similar for
generated and real images (in addition to the KL-term).

Advantages, disadvantages, and use-cases for both loss functions are discussed in the following
section.

First of all, both loss functions do not seem to be biologically plausible as they are not founded
in Hebbian learning. For the encoder loss, it is argued that it is trained to elicit a “neural
response” in the discriminator, similar to the one for real images. This “activity matching”
seems to be somewhat related to Hebbian learning as it explicitly considers the amount of
activity on the level of single neurons. However, discriminator and encoder itself are trained
using backpropagation.

Larsen et al. [41] state that the pixel-wise loss can lead to very high values even for small
translations (see Section ZZ53). Seemingly like a disadvantage, this is only true for images with
a high frequency and a notable variance of pixel values. A black-and-white image consisting
of alternating black and white rows and the same image shifted by one pixel in the y-direction
would result in a maximum pixel-wise loss as the two images are orthogonal. Yet, natural
images are usually less susceptible to a sizeable pixel-wise loss for small translations because
there are fewer regions of high contrast. In the context of natural images, the pixel-wise loss
function, amongst other, enables the model to detect if an object is placed in another corner of
the image as the loss would increase for such high translations. Nevertheless, if the aim is to
generate more realistic images, the generative loss should be used since the pixel-wise loss leads
to blurry reconstructions.

Another consideration is training stability. Due to the adversarial loss, training (GANS has many
challenges (mode collapse, error oscillation, see Section ZZ51), often resulting in failure modes.
Training regular VAHSs, in contrast, is far more stable.

The choice of the loss function might also play an essential role in comparing a models’ repre-
sentation with human [0 representations. Compared to the pixel-wise loss, the generative loss
allows for a more holistic image assessment. This might play an important role in the emergence
of a models’ latent representation, i.e., might lead to a more realistic latent representation in
terms of human IT activations. This aspect should be investigated in future work.

4.10 Model Limitations

All networks investigated in the course of this thesis are CNNs. Network design has to be chosen
for each network type (see Section B4). Some of these hyperparameters are context-dependent.
A network operating on MNIST, for example, receives inputs of size 28 x 28 pixels. Such networks
do not have to be as deep as a network operating on ImageNet, as fewer layers are sufficient
for the network to holistically capture the image in its entirety. Other hyperparameters are
chosen based on previous research. Some configurations are known to be better for a specific
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task than others (see Section B4). Matching layers to areas of the visual cortex, therefore, can
be challenging.

Another consideration in the context of computational neuroscience is the biological plausibility.
This thesis aims at answering how far WAHs are reasonable models of the human visual cortex.
To do this, the model structure must allow comparisons with empirical data for the parts under
investigation.

Specifically, lower model layers are compared with earlier, higher model layers with later regions
in the visual cortex. Furthermore, the models are chosen such that similar inputs translate to
similar encodings. The biological plausibility of the encoding should be further investigated
in future research. However, due to practical reasons such as the availability of training data
or computational resources, the model disregards the human bodys’ actualities, a more refined
model should incorporate.

Other than the models used in this thesis, the human eye receives a stream of visual stimuli.
Perceiving movements of animate objects could play an important role in distinguishing between
animate and inanimate objects. The dissimilarity between semantic representations of animate
and inanimate objects has been shown in Khaligh-Razavi and Kriegeskorte [36]. Recurrent
models such as LSTMs could extend the models used in this thesis to sequences of images.

This thesis only considered image data to form semantic representations, even though the human
mind perceives the world through more senses. Future research could aim at investigating if and
by how far semantic representations can be improved by using additional sources of information,
such as sound.

4.11 Top-Down Connections

As discussed in Section P13, the lateral geniculate nucleus (LGN) and quaternary visual cortex
(M) receive input from top-down connections. The top-down connections into M4 are assumed
to enable attentional mechanisms [6S].

Similarly, the Ladder Variational Autoencoder (EMAE) model (see Section ZZ523) employs top-
down connections. In that regard, the LNAE is biologically more plausible compared to the
original MAH models. Sgnderby et al. [68] claim that the top-down pass helps improving the
low-level feature representation because it enables the model to incorporate the higher-level
context. Even though Zhao, Song, and Ermon [[75] discuss that LVAEs do not employ the latent
spaces as efficient as the MLAE, top-down connections enabling attentional mechanisms could
play an important role designing more biologically plausible VAE models.

Future work should investigate if such top-down connections allow visual regions operating on
a lower semantic level to incorporate the high-level context to disambiguate the lower-level
representations.

4.12 Possible applications of VLAE-GAN model

VanRullen and Reddy [[71] learn a mapping between test subjects’ fMRI responses (when shown
images from the CelebA dataset) and the latent space of a WAE. They discuss which brain
regions have most influence in the mapping, showing that the occipital lobe contributes most
and the temporal and frontoparietal cortex the least.

The NLAH and NLAEHGAN used in the course of this thesis use three latent spaces compared
to one latent space for a regular NAH(-(GAN]). Furthermore it is designed such that the latent
spaces encode features on different granularity levels.
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Conducting an experiment that is similar to VanRullen and Reddy [71], but maps information
from ealier regions of the visual cortex onto lower layers of the model, and higher regions
onto higher layers, could help answering whether the lower-level representations are biologically
plausible. However, a prerequisite for such a model is to find a MAEike model explaining
cortical activity.

4.13 Comparison to the Inferior Temporal Cortex

Khaligh-Razavi and Kriegeskorte [36] show that higher layers of CNNs trained in a supervised
manner explain cortical activity. They also show that this is not true for a variety of unsuper-
vised models. However, VAHEs-models are not discussed. It cannot be ruled out that MAHSs, even
though being unrelated to lower regions of the visual system (see Section Bl), explain cortical
activity in the higher layers or the latent space. Future work should compare [l fMRI data to
higher layers of MAHs to investigate this.

4.14 Semantic Representations

Other than unsupervised models, supervised models are known to explain cortical activity [36,
M0]. Regarding semantic representations, hidden layer activations of supervised CNNs are a
promising candidate.

Nevertheless, semantic representations should at least fulfill the requirements discussed in Sec-
tion 3. Hidden layer activations of supervised CNNs have already shown to fulfill the require-
ment of biological plausibility to some extent [36]. Furthermore, the representational dissim-
ilarity matrix (BDM) study indicates that similar stimuli activate similar subpopulations of
“neurons” in the network.

However, it remains unclear whether these subpopulations consist of neighboring units. This
is presumably not the case as the network has no intent to group units that are active for a
particular stimulus, close to another.

Variational Autoencoders (VAESs), in contrast, have the property to map similar stimuli to
neighboring areas of the latent space. A NAR as part of a supervised CNN®?, trained to
reconstruct hidden layer activations, could therefore be a good candidate model for semantic
representations. It is suspected to obtain the “explain-cortical-activity” property while also
grouping similar stimuli onto neighboring areas in the latent space.

This approach, however, would still not employ sparse representations.

4.15 Sequential Data

All models that were trained in the course of this thesis were non-sequential. Even though
supervised models trained on static images show relatedness to the visual system [36, 10, 40],
the same does not seem to hold for unsupervised models. However, some unsupervised models
trained on sequential data have shown to learn Gabor wavelets [4, 64]. This could indicate
that unsupervised models need sequential data to form semantic representations. This line of
reasoning is further supported by the fact that humans sequentially perceive the world.

A NAE or NLAH-model extended to sequential data could bring new insights into the role of
CNNs as models of the visual system.

4TPotentially even a sequential one, see Section EI&
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5 Conclusion

This thesis discussed if Variational Autoencoders (WAESs) are candidate models of the visual
cortex, potentially allowing to obtain semantic representations of the input.

WVAHESs and Variational Ladder Autoencoders (MLAKES) neither show Gabor wavelets in early
layers, nor do they employ sparseness for inner activities. In their current form, neither VAHs nor
VT AFs seem to be a good model of the visual cortex. Modifications of the MAH model structure
such as top-down connections or recurrent layers allowing for input sequences could shed new
light on biological relatedness. Even though WVAHs and WILAHs are not related to the biological
example in the lower layers, a representational dissimilarity matrix (RIXM) comparison between
inferior temporal cortex (M) and the high-level representations of MAHEs should be conducted
in the future. If MAE-models fail in explaining cortical activity, it should be investigated why
supervised models succeed in this regard. One possible explanation is that the brain mainly
learns in a supervised manner and that supervision is always required to build realistic models
of the brain. This assumption seems to be too naive: First, the models discussed in this thesis
are too unrelated to the brain to allow such a conclusion. The role of top-down connections as
well as the role of sequential data has not been investigated thoroughly. Furthermore, there are
unsupervised models leading to Gabor wavelets [63, @]. This is another hint that unsupervised
models in general might be suitable models but need more refinement. NAE-models learn
dense input representations. Even though this is benefical in terms of image generation, this
representation might be too disconnected from the biological example. The higher-layer activity
of supervised convolutional neural networks (CNNs) could serve as a biologically more plausible
input representation. WAFE-encodings of these representations might combine the advantages of
the two models.

This work proposes new means of analyzing latent space entanglement in AEs and indepen-
dence of VL. AH-generated items. It has been shown that NLAHSs do not learn independent
factors of variation independently in different layers. Furthermore, many factors of variation
are learned across multiple layers. This contradicts the findings of Zhao, Song, and Ermon [74].
Additionally, studying only model-generated samples can be misguiding because decoders could
be able to factor out redundant information in the latent spaces. However, the latent distribu-
tions are also not independent in terms of generated images as shown by the proposed method
of analysis. MAHSs and ML ATHs often fail in retrieving the data distribution. Sampling from
the posterior distribution leads to class distributions different from the input data. Therefore,
latent space entanglement seems to be less controllable for VLAHSs than for VAEs.

Considering lower-, and higher-level factors of variation, it has been shown that MAHs and
WL AFESs learn super-, and sub-clusters of different factors of variation. Furthermore, MAHEs with
a well-balanced loss function can encode and learn a transition between categorical factors of
variation. However, poorly defined AE can even fail in learning continuous factors of variation
if not enough samples are present in the training set.

Employing the adversarial loss function instead of the pixel-wise loss does not seem to lead to
improvements in terms of biological plausibility or latent space entanglement. Yet, decoders
of such models apparently do better factor out redundant information in the latent spaces.
In conclusion, it seems that the pixel-wise loss functions has fewer disadvantages but more
advantages than the adversarial loss.
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A Network Architectures

A.1 VAE-models

Layer (type) Output Shape Param # Connected to

encoder__input (InputLayer) (None, 28, 28, 3) 0

encoder_conv_0 (Conv2D) (None, 14, 14, 32) 896 encoder__input [0][0]
batch_normalization_1 (BatchNor (None, 14, 14, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 14, 14, 32) 0 batch_normalization_1[0][0]
encoder_conv_1 (Conv2D) (None, 7, 7, 64) 18496 re_lu _1[0][0]
batch_normalization_2 (BatchNor (None, 7, 7, 64) 256 encoder_conv_1[0][0]
re_lu_ 2 (ReLU) (None, 7, 7, 64) 0 batch_ normalization 2[0][0]
encoder__conv_2 (Conv2D) (None, 7, 7, 128) 73856 re_lu_2[0][0]
batch_normalization_3 (BatchNor (None, 7, 7, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 7, 7, 128) 0 batch_normalization_3[0][0]
encoder_conv_3 (Conv2D) (None, 7, 7, 256) 295168 re_lu_3[0][0]
batch_normalization_4 (BatchNor (None, 7, 7, 256) 1024 encoder_conv_3[0][0]
re_lu_4 (ReLU) (None, 7, 7, 256) 0 batch_normalization_4[0][0]
flatten 1 (Flatten) (None, 12544) 0 re_lu_4[0][0]

mu (Dense) (None, 2) 25090 flatten__1 [0][0]

log_var (Dense) (None, 2) 25090 flatten_1[0][0]
encoder__output (Lambda) (None, 2) 0 mu[0][0]

log_var [0][0]

Total params:
Trainable params:
Non—trainable params:

440,516
439,556
960

Listing 1: MN1sT-VAE Encoder

Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 2) 0
dense_1 (Dense) (None, 12544) 37632
reshape_1 (Reshape) (None, 7, 7, 256) 0
decoder_conv_t_0 (Conv2DTran (None, 7, 7, 256) 1048832
batch_normalization_5 (Batch (None, 7, 7, 256) 1024
leaky_re_lu_1 (LeakyReLU) (None, 7, 7, 256) 0
decoder_conv_t_1 (Conv2DTran (Nomne, 7, 7, 128) 524416
batch_normalization_6 (Batch (None, 7, 7, 128) 512
leaky re_lu_2 (LeakyReLU) (None, 7, 7, 128) 0
decoder_conv_t_2 (Conv2DTran (None, 14, 14, 64) 131136
batch_normalization_7 (Batch (None, 14, 14, 64) 256
leaky re_lu_3 (LeakyReLU) (None, 14, 14, 64) 0
decoder_conv_t_3 (Conv2DTran (None, 28, 28, 3) 3075
activation_1 (Activation) (None, 28, 28, 3) 0

Total params: 1,746,883
Trainable params: 1,745,987
Non—trainable params: 896

Listing 2: MNIST-VAE Decoder

Layer (type) Output Shape Param # Connected to

encoder__input (InputLayer) (None, 64, 64, 1) 0

encoder_conv_0 (Conv2D) (None, 32, 32, 32) 544 encoder__input [0][0]
batch_normalization_1 (BatchNor (None, 32, 32, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 32, 32, 32) 0 batch_normalization_1[0][0]
encoder_conv_1 (Conv2D) (None, 16, 16, 64) 32832 re_lu _1[0][0]
batch_normalization_2 (BatchNor (None, 16, 16, 64) 256 encoder_conv_1[0][0]
re_lu_ 2 (ReLU) (None, 16, 16, 64) 0 batch_ normalization 2[0][0]
encoder__conv_2 (Conv2D) (None, 8, 8, 128) 131200 re_lu_2[0][0]
batch_normalization_3 (BatchNor (None, 8, 8, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 8, 8, 128) 0 batch_normalization_3[0][0]
encoder_conv_3 (Conv2D) (None, 4, 4, 256) 524544 re_lu_3[0][0]
batch_normalization_4 (BatchNor (None, 4, 4, 256) 1024 encoder_conv_3[0][0]
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re_lu_4 (ReLU) (None, 4, 4, 256) 0 batch_normalization_4[0][0]
encoder_conv_4 (Conv2D) (None, 4, 4, 512) 2097664 re_lu_4[0][0]
batch_normalization_5 (BatchNor (None, 4, 4, 512) 2048 encoder_conv_4[0][0]
re_lu_5 (ReLU) (None, 4, 4, 512) 0 batch_normalization_5[0][0]
flatten_1 (Flatten) (None, 8192) 0 re_lu_5[0][0]

mu (Dense) (None, 10) 81930 flatten__1[0][0]

log_var (Dense) (None, 10) 81930 flatten_ 1[0][0]
encoder__output (Lambda) (None, 10) 0 mu[0][0]

log_var[0][0]

Total params:
Trainable params:
Non—trainable params:

2,954,612
27952,628
1,984

Listing 3: (dSprites, 7,500, 6,250, 5,000, 3,750)-VAE Encoder

Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 10) 0
dense_1 (Dense) (None, 8192) 90112
reshape_1 (Reshape) (None, 4, 4, 512) 0
decoder_conv_t_0 (Conv2DTran (None, 8, 8, 512) 4194816
batch_normalization_6 (Batch (None, 8, 8, 512) 2048
leaky re_lu_1 (LeakyReLU) (None, 8, 8, 512) 0
decoder_conv_t_1 (Conv2DTran (None, 16, 16, 256) 2097408
batch_ normalization 7 (Batch (None, 16, 16, 256) 1024
leaky_re_lu_2 (LeakyReLU) (None, 16, 16, 256) 0
decoder_conv_t_2 (Conv2DTran (None, 32, 32, 128) 524416
batch_normalization_8 (Batch (None, 32, 32, 128) 512
leaky_re_lu_3 (LeakyReLU) (None, 32, 32, 128) 0
decoder_conv_t_3 (Conv2DTran (None, 64, 64, 1) 2049
activation_1 (Activation) (None, 64, 64, 1) 0

Total params: 6,912,385
Trainable params: 6,910

,593
Non—trainable params: 1,792

Listing 4: (dSprites, 7,500, 6,250, 5,000, 3,750)-VAE Decoder

Layer (type) Output Shape Param # Connected to

encoder__input (InputLayer) (None, 128, 128, 3) 0

encoder_conv_0 (Conv2D) (None, 64, 64, 32) 1568 encoder__input [0][0]
batch_normalization_1 (BatchNor (None, 64, 64, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 64, 64, 32) 0 batch_normalization_1[0][0]
encoder_conv_1 (Conv2D) (None, 32, 32, 64) 32832 re_lu_1[0][0]
batch_normalization_2 (BatchNor (None, 32, 32, 64) 256 encoder_conv_1[0][0]
re_lu_2 (ReLU) (None, 32, 32, 64) 0 batch_normalization_2[0][0]
encoder__conv_2 (Conv2D) (None, 16, 16, 128) 131200 re_lu_ 2[0][0]
batch_normalization_3 (BatchNor (None, 16, 16, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 16, 16, 128) 0 batch_normalization_3[0][0]
encoder__conv_3 (Conv2D) (None, 8, 8, 256) 524544 re_lu_3[0][0]
batch_normalization_4 (BatchNor (None, 8, 8, 256) 1024 encoder_conv_3[0][0]
re_lu_4 (ReLU) (None, 8, 8, 256) 0 batch_normalization_4[0][0]
encoder_conv_4 (Conv2D) (None, 8, 8, 512) 2097664 re_lu_4[0][0]
batch_normalization_5 (BatchNor (None, 8, 8, 512) 2048 encoder_conv_4[0][0]
re_lu_5 (ReLU) (None, 8, 8, 512) 0 batch_normalization_5[0][0]
flatten 1 (Flatten) (None, 32768) 0 re_lu 5[0][0]

mu (Dense) (None, 8) 262152 flatten__1 [0][0]

log_var (Dense) (None, 8) 262152 flatten_1[0][0]
encoder__output (Lambda) (None, 8) 0 mu[0][0]

log_var[0][0]

Total params: 3,316,080
Trainable params: 3,314,096
Non—trainable params: 1,984

Listing 5: CelebA-VAE Encoder
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Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 8) 0
dense_1 (Dense) (None, 32768) 294912
reshape_1 (Reshape) (None, 8, 8, 512) 0
decoder_conv_t_ 0 (Conv2DTran (None, 16, 16, 512) 4194816
batch_normalization_6 (Batch (None, 16, 16, 512) 2048
leaky re lu_1 (LeakyReLU) (None, 16, 16, 512) 0
decoder_conv_t_1 (Conv2DTran (None, 32, 32, 256) 2097408
batch_normalization_7 (Batch (None, 32, 32, 256) 1024
leaky_re_lu_2 (LeakyReLU) (None, 32, 32, 256) 0
decoder_conv_t_2 (Conv2DTran (None, 64, 64, 128) 524416
batch_normalization_8 (Batch (None, 64, 64, 128) 512
leaky_re_lu_3 (LeakyReLU) (None, 64, 64, 128) 0
decoder_conv_t 3 (Conv2DTran (None, 128, 128, 3) 6147
activation_1 (Activation) (None, 128, 128, 3) 0
Total params: 7,121,283

Trainable params: 7,119,491

Non—trainable params: 1,792

Listing 6: CelebA-VAE Decoder

A.2 VLAE-models

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 28, 28, 1) 0
inference_0_conv2d_0 (Conv2D) (None, 14, 14, 64) 1664 input_1[0][0]
inference_0_relu_0 (ReLU) (None, 14, 14, 64) 0 inference_0_conv2d_0[0][0]
inference__1_conv2d_0 (Conv2D) (None, 7, 7, 64) 36928 inference_0_relu_0[0][0]
inference__1_relu_0 (ReLU) (None, 7, 7, 64) 0 inference__1_conv2d_0[0][0]
ladder_2_conv2d_0 (Conv2D) (None, 7, 7, 64) 36928 inference__1_relu_0[0][0]
ladder__2_relu_0 (ReLU) (None, 7, 7, 64) 0 ladder__2_conv2d_0[0][0]
ladder_ 0_conv2d_0 (Conv2D) (None, 14, 14, 64) 1664 input_1[0][0]
ladder__1_conv2d_0 (Conv2D) (None, 7, 7, 64) 102464 inference_0_relu_0[0][0]
ladder_2_conv2d_1 (Conv2D) (None, 7, 7, 64) 36928 ladder_2_ relu_0[0][0]
ladder_0_relu_0 (ReLU) (None, 14, 14, 64) 0 ladder_0_conv2d_0[0][0]
ladder_1_relu_0 (ReLU) (None, 7, 7, 64) 0 ladder__1_conv2d_0[0][0]
ladder_2_ relu_1 (ReLU) (None, 7, 7, 64) 0 ladder_2_ conv2d_1[0][0]
ladder__0_flatten (Flatten) (None, 12544) 0 ladder__0_relu_0[0][0]
ladder__1_flatten (Flatten) (None, 3136) 0 ladder_1_relu_0[0][0]
ladder__2_flatten (Flatten) (None, 3136) 0 ladder__2_relu_1[0][0]
mu_1 (Dense) (None, 2) 25090 ladder_0_ flatten [0][O0]
log_var_1 (Dense) (None, 2) 25090 ladder__0_ flatten [0][0]
mu_2 (Dense) (None, 2) 6274 ladder__1_flatten [0][0]
log_var_2 (Dense) (None, 2) 6274 ladder__1_flatten [0][O0]
mu_3 (Dense) (None, 2) 6274 ladder__2_flatten [0][0]
log_var_3 (Dense) (None, 2) 6274 ladder_2_flatten [0][0]
z_1_latent (Lambda) (None, 2) 0 mu_1[0][0]
log_var_1[0][0]
z__2 latent (Lambda) (None, 2) 0 mu_2[0][0]
log_var_2[0][0]
z__3__latent (Lambda) (None, 2) 0 mu_3[0][0]
log_var_3[0][0]
Total params: 291,852
Trainable params: 291,852
Non—trainable params: 0

Listing 7: MN1ST-VLAE-factor-1 Encoder
Layer (type) Output Shape Param # Connected to
z_3 (InputLayer) (None, 2) 0
generative 2 dense_0 (Dense) (None, 1024) 3072 z_3[0][0]
generative 2 _ relu_0 (ReLU) (None, 1024) 0 generative_ 2 dense_0[0][0]
generative 2 dense_1 (Dense) (None, 1024) 1049600 generative_2_relu_0[0][0]
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generative__2_relu_1 (ReLU) (None, 1024) 0 generative__2_ dense_1[0][0]
z_2 (InputLayer) (None, 2) 0
concatenate_2 and_1 (Concatenat (None, 1026) 0 generative_ 2 _relu_1[0][0]
z_2[0][0]
generative_1_dense_0 (Dense) (None, 1024) 1051648 concatenate_2_ and_1[0][0]
generative__1_relu_0 (ReLU) (None, 1024) 0 generative 1 _dense_0[0][0]
generative__1_dense_1 (Dense) (None, 1024) 1049600 generative_1_relu_0[0][0]
generative 1 relu_1 (ReLU) (None, 1024) 0 generative_1_dense_1[0][0]
z_1 (InputLayer) (None, 2) 0
concatenate_1_and_0 (Concatenat (None, 1026) 0 generative_1_relu_1[0][0]
2 10][0]
generative_0__dense_0 (Dense) (None, 3136) 3220672 concatenate_1_and_0[0][0]
generative_0_relu_0 (ReLU) (None, 3136) 0 generative_0_dense_0[0][0]
generative 0_reshape 0 (Reshape (None, 7, 7, 64) 0 generative_0_relu_0[0][0]
generative_0_conv2d_transpose_0 (None, 14, 14, 64) 102464 generative_0_reshape_0[0][0]
generative_0_leaky_ relu_transpo (None, 14, 14, 64) 0 generative_0_conv2d_transpose_0 [0
generative_0__conv2d_transpose_1 (None, 28, 28, 64) 36928 generative__0__leaky_ relu__transpose
generative_0_leaky_ relu_transpo (None, 28, 28, 64) 0 generative_0_conv2d_transpose_1[0
generative__0__conv2d_transpose_2 (None, 28, 28, 1) 1601 generative_0_leaky_ relu_transpose
generative_ 0_sigmoid_0 (Activat (None, 28, 28, 1) 0 generative_0_conv2d_transpose_2[0
Total params: 6,515,585
Trainable params: 6,515,585
Non—trainable params: 0
Listing 8: MNI1ST-VLAE-factor-1 Decoder
Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 28, 28, 1) 0
inference__0_conv2d_0 (Conv2D) (None, 14, 14, 32) 832 input_1[0][0]
inference_0_relu_0 (ReLU) (None, 14, 14, 32) 0 inference_0_conv2d_0[0][0]
inference__1_conv2d_0 (Conv2D) (None, 7, 7, 32) 9248 inference__0_relu_0[0][0]
inference__1_relu_0 (ReLU) (None, 7, 7, 32) 0 inference_1_conv2d_0[0][0]
ladder_2_conv2d_0 (Conv2D) (None, 7, 7, 32) 9248 inference 1 _relu_0[0][0]
ladder_2_relu_0 (ReLU) (None, 7, 7, 32) 0 ladder__2_conv2d_0[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 14, 14, 32) 832 input_1[0][0]
ladder__1_conv2d_0 (Conv2D) (None, 7, 7, 32) 25632 inference_0_relu_0[0][0]
ladder_2_conv2d_1 (Conv2D) (None, 7, 7, 32) 9248 ladder_2_relu_0[0][0]
ladder_0_relu_0 (ReLU) (None, 14, 14, 32) 0 ladder__0_conv2d_0[0][0]
ladder__1_relu_0 (ReLU) (None, 7, 7, 32) 0 ladder__1_conv2d_0[0][0]
ladder_2_ relu_1 (ReLU) (None, 7, 7, 32) 0 ladder_2_conv2d_1[0][0]
ladder__0_flatten (Flatten) (None, 6272) 0 ladder_0_relu_0[0][0]
ladder__1_flatten (Flatten) (None, 1568) 0 ladder_1_relu_0[0][0]
ladder__2_flatten (Flatten) (None, 1568) 0 ladder_2_relu_1[0][0]
mu_1 (Dense) (None, 2) 12546 ladder__0_ flatten [0][O0]
log_var_1 (Dense) (None, 2) 12546 ladder__0_ flatten [0][O0]
mu_2 (Dense) (None, 2) 3138 ladder__1_ flatten [0][0]
log_var_2 (Dense) (None, 2) 3138 ladder__1_flatten [0][0]
mu_3 (Dense) (None, 2) 3138 ladder__2_flatten [0][0]
log_var_3 (Dense) (None, 2) 3138 ladder_2_flatten [0][O0]
z_1_latent (Lambda) (None, 2) 0 mu_1[0][0]
log_var_1[0][0]
z_2_latent (Lambda) (None, 2) 0 mu_2[0][0]
log_var_2[0][0]
z__3__latent %Lambda) (None, 2) 0 mu 3[0][0]
log_var_3[0][0]
Total params: 92,684
Trainable params: 92,684
Non—trainable params: 0
Listing 9: MNI1sT-VLAE-factor-2 Encoder

} Layer (type) Output Shape Param # Connected to

‘ z_3 (InputLayer) (None, 2) 0

‘ generative 2 dense_ 0 (Dense) (None, 512) 1536 z_3[0][0]

| generative_2_relu_0 (ReLU) (None, 512) 0 generative__2_ dense_0[0][0]



generative_2 dense_1 (Dense) (None, 512) 262656 generative_2_relu_0[0][0]
generative 2 relu_1 (ReLU) (None, 512) 0 generative_2_ dense_1[0][0]

z_2 (InputLayer) (None, 2) 0

concatenate_2 and_1 (Concatenat (None, 514) 0 generative_2_relu_1[0][0]
z_2[0][0]

generative__1_ dense_0 (Dense) (None, 512) 263680 concatenate_2_ and_1[0][0]
generative__1_relu_0 (ReLU) (None, 512) 0 generative__1_dense_0[0][0]
generative 1 dense_ 1 (Dense) (None, 512) 262656 generative_1_relu_0[0][0]
generative__1_relu_1 (ReLU) (None, 512) 0 generative__1_dense_1[0][0]

z_1 (InputLayer) (None, 2) 0

concatenate_1_and_0 (Concatenat (None, 514) 0 generative_1_relu_1[0][0]
z_1[0][0]

generative_0_dense_0 (Dense) (None, 1568) 807520 concatenate_1_and_0[0][0]
generative _0_relu_0 (ReLU) (None, 1568) 0 generative_0_dense_0[0][0]
generative_0_reshape_ 0 (Reshape (None, 7, 7, 32) 0 generative O0_relu_0[0][0]
generative_0_conv2d_transpose_0 (None, 14, 14, 32) 25632 generative__0_reshape_0[0][0]
generative_0_leaky_ relu_ transpo (None, 14, 14, 32) 0 generative_0__conv2d__transpose_0 [0
generative_0_conv2d_transpose_1 (None, 28, 28, 32) 9248 generative__0_leaky_ relu_transpose
generative_0_leaky_ relu_transpo (None, 28, 28, 32) 0 generative_0_conv2d_transpose_1[0
generative_0_conv2d_transpose_2 (None, 28, 28, 1) 801 generative_0_leaky_ relu_transpose
generative_0_sigmoid_0 (Activat (None, 28, 28, 1) 0 generative_0_conv2d_transpose_2[0

Total params: 1,633,729
Trainable params: 1,633,729
Non—trainable params: 0

Listing 10: MN1sT-VLAE-factor-2 Decoder

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 28, 28, 1) 0

inference_0_conv2d_0 (Conv2D) (None, 14, 14, 22) 572 input_1[0][0]
inference__0_relu_0 (ReLU) (None, 14, 14, 22) 0 inference__0_conv2d_0[0][0]
inference__1_conv2d_0 (Conv2D) (None, 7, 7, 22) 4378 inference_0_relu_0[0][0]
inference_1_relu_0 (ReLU) (None, 7, 7, 22) 0 inference 1 conv2d_0[0][0]
ladder__2_conv2d_0 (Conv2D) (None, 7, 7, 22) 4378 inference__1_relu_0[0][0]
ladder_2_ relu_0 (ReLU) (None, 7, 7, 22) 0 ladder_2_ conv2d_0[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 14, 14, 22) 572 input_1[0][0]
ladder_1_conv2d_0 (Conv2D) (None, 7, 7, 22) 12122 inference_0_relu_0[0][0]
ladder__2_conv2d_1 (Conv2D) (None, 7, 7, 22) 4378 ladder_2_relu_0[0][0]
ladder_0_relu_0 (ReLU) (None, 14, 14, 22) 0 ladder_0_conv2d_0[0][0]
ladder__1_relu_0 (ReLU) (None, 7, 7, 22) 0 ladder_1_conv2d_0[0][0]
ladder_2_ relu_1 (ReLU) (None, 7, 7, 22) 0 ladder_2_conv2d_1[0][0]
ladder__0_ flatten (Flatten) (None, 4312) 0 ladder_0_relu_0[0][0]
ladder__1_flatten (Flatten) (None, 1078) 0 ladder__1_relu_0[0][0]
ladder__2_flatten (Flatten) (None, 1078) 0 ladder_2_relu_1[0][0]
mu_1 (Dense) (None, 2) 8626 ladder__0_ flatten [0][O0]
log_var_1 (Dense) (None, 2) 8626 ladder__0_ flatten [0][0O]
mu_2 (Dense) (None, 2) 2158 ladder__1_flatten [0][0]
log_var_2 (Dense) (None, 2) 2158 ladder__1_flatten [0][0]
mu_3 (Dense) (None, 2) 2158 ladder_2_flatten [0][0]
log_var_3 (Dense) (None, 2) 2158 ladder__2_flatten [0][O0]
z_1_latent (Lambda) (None, 2) 0 mu_1[0][0]
log_var_1[0][0]

z__2_ latent %Lambda) (None, 2) 0 mu_2[0][0]
log_var_2[0][0]

z_3__latent (Lambda) (None, 2) 0 mu_3[0][0]

log_var_3[0][0]

Total params: 52,284
Trainable params: 52,284
Non—trainable params: 0

Listing 11: MN1sT-VLAE-factor-3 Encoder

Layer (type) Output Shape Param # Connected to
z_3 (InputLayer) (None, 2) 0
generative_2 dense_0 (Dense) (None, 342) 1026 z_3[0][0]
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generative__2_relu_0 (ReLU) (None, 342) 0 generative__2_ dense_0[0][0]

generative 2 dense_ 1 (Dense) (None, 342) 117306 generative_2_ relu_0[0][0]
generative_2_relu_1 (ReLU) (None, 342) 0 generative_ 2 dense_1[0][0]

z_2 (InputLayer) (None, 2) 0

concatenate 2 and_1 (Concatenat (None, 344) 0 generative 2 relu_ 1[0][0]
z_2[0][0]

generative__1_dense_0 (Dense) (None, 342) 117990 concatenate_2_and_1[0][0]
generative 1 _relu_0 (ReLU) (None, 342) 0 generative_1_dense_0[0][0]
generative__1_dense_1 (Dense) (None, 342) 117306 generative_1_relu_0[0][0]
generative_1_relu_1 (ReLU) (None, 342) 0 generative_1_dense_1[0][0]

z_1 (InputLayer) (None, 2) 0

concatenate_1 _and_0 (Concatenat (None, 344) 0 generative_1_relu_1[0][0]
z_1[0][0]

generative_0_dense_0 (Dense) (None, 1078) 371910 concatenate_1_and_0[0][0]
generative 0_relu_0 (ReLU) (None, 1078) 0 generative_0_dense_0[0][0]
generative_0_reshape_0 (Reshape (None, 7, 7, 22) 0 generative_0_relu_0[0][0]
generative_0__conv2d_transpose_0 (None, 14, 14, 22) 12122 generative_0_reshape_0[0][0]
generative__0_leaky_ relu_transpo (None, 14, 14, 22) 0 generative_0_conv2d_transpose_0[0
generative_0__conv2d_transpose_1 (None, 28, 28, 22) 4378 generative_0_leaky_ relu_transpose
generative_0_leaky_ relu_transpo (None, 28, 28, 22) 0 generative_0_conv2d_transpose_1[0
generative_0__conv2d_transpose_2 (None, 28, 28, 1) 551 generative__0__leaky__relu__transpose
generative 0_sigmoid_ 0 (Activat (None, 28, 28, 1) 0 generative_0__conv2d__transpose_2[0

Total params: 742,589
Trainable params: 742,589
Non—trainable params: 0

Listing 12: MN1sT-VLAE-factor-3 Decoder

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 64, 64, 1) 0

inference_0_conv2d_0 (Conv2D) (None, 32, 32, 32) 544 input_1[0][0]
inference_0_dropout_0 (Dropout) (None, 32, 32, 32) 0 inference_0_conv2d_0[0][0]
inference_0_batch norm_ 0 (Batch (None, 32, 32, 32) 128 inference_0_dropout_0[0][0]
inference__0_relu_0 (ReLU) (None, 32, 32, 32) 0 inference_0__batch_norm_0[0][0]
inference_0_conv2d_1 (Conv2D) (None, 32, 32, 32) 16416 inference_0_relu_0[0][0]
inference_0_dropout_1 (Dropout) (None, 32, 32, 32) 0 inference_0_conv2d_1[0][0]
inference_0__batch_norm_1 (Batch (None, 32, 32, 32) 128 inference_0_dropout_1[0][0]
inference_0_relu_1 (ReLU) (None, 32, 32, 32) 0 inference_0__batch_ norm_1[0][0]
inference__1_conv2d_0 (Conv2D) (None, 16, 16, 64) 32832 inference_0_relu_1[0][0]
inference_1_ dropout_0 (Dropout) (None, 16, 16, 64) 0 inference 1 conv2d_0[0][0]
inference__1_batch_norm_0 (Batch (None, 16, 16, 64) 256 inference__1_dropout_0[0][0]
inference__1_relu_0 (ReLU) (None, 16, 16, 64) 0 inference__1_batch_norm_0[0][0]
inference__1_conv2d_1 (Conv2D) (None, 16, 16, 64) 65600 inference__1_relu_0[0][0]
inference_1_dropout_1 (Dropout) (None, 16, 16, 64) 0 inference_1_conv2d_1[0][0]
inference_1_batch_norm_1 (Batch (None, 16, 16, 64) 256 inference_1_dropout_1[0][0]
inference__1_relu_1 (ReLU) (None, 16, 16, 64) 0 inference__1_batch_norm_1[0][0]
ladder_2_ conv2d_0 (Conv2D) (None, 8, 8, 256) 262400 inference 1 _relu_1[0][0]
ladder__2_dropout_0 (Dropout) (None, 8, 8, 256) 0 ladder__2_conv2d_0[0][0]
ladder_2_batch_norm_0 (BatchNor (None, 8, 8, 256) 1024 ladder_2_dropout_0[0][0]
ladder__2_ relu_0 (ReLU) (None, 8, 8, 256) 0 ladder__2_batch_norm_0[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 32, 32, 128) 2176 input_1[0][0]
ladder__1_conv2d_0 (Conv2D) (None, 16, 16, 256) 131328 inference_0_relu_1[0][0]
ladder_2_conv2d_1 (Conv2D) (None, 4, 4, 512) 2097664 ladder_2_relu_0[0][0]
ladder_0__dropout_0 (Dropout) (None, 32, 32, 128) 0 ladder_0_conv2d_0[0][0]
ladder__1_dropout_0 (Dropout) (None, 16, 16, 256) 0 ladder_1_conv2d_0[0][0]
ladder_2_dropout_1 (Dropout) (None, 4, 4, 512) 0 ladder_2_conv2d_1[0][0]
ladder__0__batch_norm_0 (BatchNor (None, 32, 32, 128) 512 ladder__0__dropout_0[0][0]
ladder__1_batch_norm_0 (BatchNor (None, 16, 16, 256) 1024 ladder__1_dropout_0[0][0]
ladder__2_batch_norm_1 (BatchNor (None, 4, 4, 512) 2048 ladder_2_dropout_1[0][0]
ladder_0_relu_0 (ReLU) (None, 32, 32, 128) 0 ladder__0__batch_norm_0[0][0]
ladder__1_relu_0 (ReLU) (None, 16, 16, 256) O ladder__1_batch_norm_0[0][0]
ladder_2_ relu_1 (ReLU) (None, 4, 4, 512) 0 ladder__2_batch_norm_1[0][0]
ladder_0_conv2d_1 (Conv2D) (None, 32, 32, 128) 262272 ladder_0_relu_0[0][0]
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ladder__1_conv2d_1 (Conv2D) (None, 16, 16, 256) 1048832 ladder_1_relu_0[0][0]
ladder__2_conv2d_2 (Conv2D) (None, 2, 2, 1024) 8389632 ladder_2_relu_1[0][0]
ladder__0__dropout_1 (Dropout) (None, 32, 32, 128) 0 ladder_0_conv2d_1[0][0]
ladder__1_dropout_1 (Dropout) (None, 16, 16, 256) 0 ladder__1_conv2d_1[0][0]
ladder_2_dropout_2 (Dropout) (None, 2, 2, 1024) 0 ladder_2_conv2d_2[0][0]
ladder_0__batch_norm_1 (BatchNor (None, 32, 32, 128) 512 ladder__0__dropout_1[0][0]
ladder__1_batch_norm_1 (BatchNor (None, 16, 16, 256) 1024 ladder__1_dropout_1[0][0]
ladder__2_batch_norm_2 (BatchNor (Nomne, 2, 2, 1024) 4096 ladder__2_ dropout_2[0][0]
ladder_0_relu_1 (ReLU) (None, 32, 32, 128) 0 ladder__0__batch_norm_1[0][0]
ladder__1_relu_1 (ReLU) (None, 16, 16, 256) O ladder__1_batch_norm_1[0][0]
ladder_2_relu_2 (ReLU) (None, 2, 2, 1024) 0 ladder__2_batch_norm_2[0][0]
ladder__0_ flatten (Flatten) (None, 131072) 0 ladder_0_relu_1[0][0]
ladder__1_flatten (Flatten) (None, 65536) 0 ladder__1_relu_1[0][0]
ladder__2_flatten (Flatten) (None, 4096) 0 ladder_2_relu_2[0][0]
ladder__0_dropout (Dropout) (None, 131072) 0 ladder__0_flatten [0][O0]
ladder__1_dropout (Dropout) (None, 65536) 0 ladder__1_ flatten [0][O0]
ladder__2_dropout (Dropout) (None, 4096) 0 ladder__2_flatten [0][O0]
mu_1 (Dense) (None, 4) 524292 ladder__0_dropout [0][0]
log_var_1 (Dense) (None, 4) 524292 ladder_0_dropout [0][0]
mu_2 (Dense) (None, 4) 262148 ladder__1_dropout [0][0]
log_var_2 (Dense) (None, 4) 262148 ladder_1_dropout [0][0]
mu_3 (Dense) (None, 4) 16388 ladder__2_ dropout [0][0]
log_var_3 (Dense) (None, 4) 16388 ladder_2_dropout [0][0]
z_1_latent (Lambda) (None, 4) 0 mu_1[0][0]

log_var_1[0][0]
z_2_latent (Lambda) (None, 4) 0 mu_2[0][0]

log_var_2[0][0]
z_3_latent (Lambda) (None, 4) 0 mu_3[0][0]

log_var_3[0][0]

Total params: 13,926,360
Trainable params: 13,920
Non—trainable params: 5,

Listing 13: dSprites-VLAE Encoder

Layer (type) Output Shape Param # Connected to
z_3 (InputLayer) (None, 4) 0
generative_2_ dense_0 (Dense) (None, 1024) 5120 z_3[0][0]
generative_2_dropout_0 (Dropout (None, 1024) 0 generative 2 dense_0[0][0]
generative__2_ batch_norm_0 (Batc (None, 1024) 4096 generative__2_ dropout_0[0][0]
generative 2 relu_0 (ReLU) (None, 1024) 0 generative_2_batch_norm_0[0][0]
generative 2 dense_1 (Dense) (None, 1024) 1049600 generative_2_relu_0[0][0]
generative_2_dropout_1 (Dropout (None, 1024) 0 generative_2_ dense_1[0][0]
generative_2_batch_norm_1 (Batc (None, 1024) 4096 generative_2_dropout_1[0][0]
generative_2_relu_1 (ReLU) (None, 1024) 0 generative_2_ batch_norm_1[0][0]
z_2 (InputLayer) (None, 4) 0
concatenate_2 and_1 (Concatenat (None, 1028) 0 generative 2 relu_1[0][0]
2 2(0][0]
generative__1_dense_0 (Dense) (None, 1024) 1053696 concatenate_2_and_1[0][0]
generative_1_dropout_0 (Dropout (None, 1024) 0 generative_1_dense_0[0][0]
generative__1_batch_norm_0 (Batc (None, 1024) 4096 generative__1_dropout_0[0][0]
generative__1_relu_0 (ReLU) (None, 1024) 0 generative_1_batch_norm_0[0][0]
generative_1_dense_1 (Dense) (None, 1024) 1049600 generative 1 _relu_0[0][0]
generative_1_ dropout_1 (Dropout (None, 1024) 0 generative_1_dense_1[0][0]
generative_1_ batch_norm_1 (Batc (None, 1024) 4096 generative_1_dropout_1[0][0]
generative 1 _relu_1 (ReLU) (None, 1024) 0 generative_1_batch_norm_1[0][0]
z_1 (InputLayer) (None, 4) 0
concatenate_1_and_0 (Concatenat (None, 1028) 0 generative_1_relu_1[0][0]
z_1[0][0]
generative_0_dense_0 (Dense) (None, 4096) 4214784 concatenate_1_and_0[0][0]
generative__0_dropout_0 (Dropout (None, 4096) 0 generative__0_dense_0[0][0]
generative__0__batch_norm_0 (Batc (None, 4096) 16384 generative_0_dropout_0[0][0]
generative_0_relu_0 (ReLU) (None, 4096) 0 generative_0__batch_norm_0[0][0]
generative_0_reshape_0 (Reshape (None, 2, 2, 1024) 0 generative_0_relu_0[0][0]
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generative_0_conv2d_transpose_0 (None, 4, 4, 1024) 16778240 generative__0_reshape_0[0][0]
generative_0_dropout_1 (Dropout (None, 4, 4, 1024) 0 generative_0_conv2d_transpose_0[0
generative_0_batch_norm_1 (Batc (None, 4, 4, 1024) 4096 generative_0_dropout_1[0][0]
generative_0_leaky_ relu_transpo (None, 4, 4, 1024) 0 generative_0_batch_norm_1[0][0]
generative_0_conv2d_transpose_1 (None, 8, 8, 512) 8389120 generative_0_leaky_ relu_transpose
generative_0_dropout_2 (Dropout (None, 8, 8, 512) 0 generative_0_conv2d_transpose_1[0
generative_0__batch norm_ 2 (Batc (None, 8, 8, 512) 2048 generative 0_dropout_2[0][0]
generative_0_leaky_ relu_transpo (None, 8, 8, 512) 0 generative__0__batch_norm_2[0][0]
generative 0_conv2d_transpose_2 (None, 16, 16, 256) 2097408 generative__0__leaky_relu__transpose
generative_0_dropout_3 (Dropout (None, 16, 16, 256) 0 generative_0_conv2d__transpose_2[0
generative_0__batch_norm_3 (Batc (None, 16, 16, 256) 1024 generative_0_dropout_3[0][0]
generative__0__leaky_ relu_transpo (None, 16, 16, 256) 0 generative_0__batch_norm_3[0][0]
generative_0_conv2d_transpose_3 (None, 32, 32, 128) 524416 generative_0_leaky_ relu_transpose
generative_0_dropout_4 (Dropout (None, 32, 32, 128) 0 generative _0_conv2d_transpose_3[0
generative_0__batch_norm_4 (Batc (None, 32, 32, 128) 512 generative__0_dropout_4[0][0]
generative 0_leaky relu_ transpo (None, 32, 32, 128) 0 generative 0__batch norm_4[0][0]
generative_0_conv2d__transpose_4 (None, 64, 64, 1) 2049 generative__0__leaky_ relu__transpose
generative_0_dropout_5 (Dropout (None, 64, 64, 1) 0 generative_0_conv2d_transpose_4[0
generative_0_sigmoid_0 (Activat (None, 64, 64, 1) 0 generative__0_dropout_5[0][0]

Total params:
Trainable params:
Non—trainable params:

35,204,481
35,184,257
20,224

Listing 14: dSprites-VLAE Decoder

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 128, 128, 3) 0

inference__0_conv2d_0 (Conv2D) (None, 64, 64, 32) 1568 input_1[0][0]
inference_0_dropout_0 (Dropout) (None, 64, 64, 32) 0 inference_0_conv2d_0[0][0]
inference_0__batch_norm_0 (Batch (None, 64, 64, 32) 128 inference_0_dropout_0[0][0]
inference_0_relu_0 (ReLU) (None, 64, 64, 32) 0 inference_0__batch_norm_0[0][0]
inference_0_conv2d_1 (Conv2D) (None, 64, 64, 32) 16416 inference_0_relu_0[0][0]
inference_0_dropout_1 (Dropout) (None, 64, 64, 32) 0 inference_0_conv2d _1[0][0]
inference_0__batch_norm_1 (Batch (None, 64, 64, 32) 128 inference_0_dropout_1[0][0]
inference_0_relu_1 (ReLU) (None, 64, 64, 32) 0 inference_0__batch_norm_1[0][0]
inference__1_conv2d_0 (Conv2D) (None, 32, 32, 64) 32832 inference_0_relu_1[0][0]
inference_1_dropout_0 (Dropout) (None, 32, 32, 64) 0 inference_ 1 conv2d_0[0][0]
inference__1_batch_norm_0 (Batch (None, 32, 32, 64) 256 inference__1_dropout_0[0][0]
inference_1_relu_0 (ReLU) (None, 32, 32, 64) 0 inference_1_batch_norm_0[0][0]
inference_1_conv2d_1 (Conv2D) (None, 32, 32, 64) 65600 inference__1_relu_0[0][0]
inference_1_dropout_1 (Dropout) (None, 32, 32, 64) 0 inference__1_conv2d_1[0][0]
inference_1 batch_norm_1 (Batch (None, 32, 32, 64) 256 inference__1_dropout_1[0][0]
inference__1_relu_1 (ReLU) (None, 32, 32, 64) 0 inference__1_batch_norm_1[0][0]
ladder_2_conv2d_0 (Conv2D) (None, 16, 16, 256) 262400 inference 1 _relu_1[0][0]
ladder__2_dropout_0 (Dropout) (None, 16, 16, 256) 0 ladder__2_conv2d_0[0][0]
ladder_2_batch_ norm_0 (BatchNor (None, 16, 16, 256) 1024 ladder_2 dropout_0[0][0]
ladder__2_ relu_0 (ReLU) (None, 16, 16, 256) 0 ladder__2_batch_norm_0[0][0]
ladder_2_conv2d_1 (Conv2D) (None, 8, 8, 512) 2097664 ladder_2_relu_0[0][0]
ladder__2_dropout_1 (Dropout) (None, 8, 8, 512) 0 ladder__2_conv2d_1[0][0]
ladder__2_batch_norm_1 (BatchNor (None, 8, 8, 512) 2048 ladder__2_dropout_1[0][0]
ladder_ 2 relu_1 (ReLU) (None, 8, 8, 512) 0 ladder_2_ batch_norm_1[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 64, 64, 128) 6272 input_1[0][0]
ladder_1_conv2d_0 (Conv2D) (None, 32, 32, 256) 131328 inference 0_relu_1[0][0]
ladder__2_conv2d_2 (Conv2D) (None, 8, 8, 512) 4194816 ladder_2_ relu_1[0][0]
ladder__0_dropout_0 (Dropout) (None, 64, 64, 128) 0 ladder_0_conv2d_0[0][0]
ladder__1_dropout_0 (Dropout) (None, 32, 32, 256) O ladder__1_conv2d_0[0][0]
ladder__2_dropout_2 (Dropout) (None, 8, 8, 512) 0 ladder_2_conv2d_2[0][0]
ladder_0__batch_norm_0 (BatchNor (None, 64, 64, 128) 512 ladder__0__dropout_0[0][0]
ladder__1_batch_norm_0 (BatchNor (None, 32, 32, 256) 1024 ladder__1_dropout_0[0][0]
ladder_2_batch_norm_2 (BatchNor (None, 8, 8, 512) 2048 ladder__2_dropout_2[0][0]
ladder_0_relu_0 (ReLU) (None, 64, 64, 128) 0 ladder__ 0__batch_norm_0[0][0]
ladder_1_relu_0 (ReLU) (None, 32, 32, 256) 0 ladder__1_batch_norm_0[0][0]
ladder__2_ relu_2 (ReLU) (None, 8, 8, 512) 0 ladder__2_batch_norm_2[0][0]
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ladder_0_conv2d_1 (Conv2D) (None, 64, 64, 128) 262272 ladder_0_relu_0[0][0]
ladder_1_conv2d_1 (Conv2D) (None, 32, 32, 256) 1048832 ladder_1_relu_0[0][0]
ladder__2_conv2d_3 (Conv2D) (None, 8, 8, 512) 4194816 ladder_2_relu_2[0][0]
ladder__0_dropout_1 (Dropout) (None, 64, 64, 128) 0 ladder_0_conv2d_1[0][0]
ladder_1_dropout_1 (Dropout) (None, 32, 32, 256) 0 ladder_1_conv2d_1[0][0]
ladder__2_dropout_3 (Dropout) (None, 8, 8, 512) 0 ladder__2_conv2d_3[0][0]
ladder_0_batch _norm_1 (BatchNor (None, 64, 64, 128) 512 ladder_0_dropout_1[0][0]
ladder__1_batch_norm_1 (BatchNor (None, 32, 32, 256) 1024 ladder__1_dropout_1[0][0]
ladder_2_batch_norm_3 (BatchNor (None, 8, 8, 512) 2048 ladder_2_dropout_3[0][0]
ladder_0_relu_1 (ReLU) (None, 64, 64, 128) 0 ladder__0__batch_norm_1[0][0]
ladder__1_relu_1 (ReLU) (None, 32, 32, 256) 0 ladder__1_batch_norm_1[0][0]
ladder_2_relu_3 (ReLU) (None, 8, 8, 512) 0 ladder__2_batch_norm_3[0][0]
ladder__0_flatten (Flatten) (None, 524288) 0 ladder_0_relu_1[0][0]
ladder__1_flatten (Flatten) (None, 262144) 0 ladder_1_relu_1[0][0]
ladder__2_flatten (Flatten) (None, 32768) 0 ladder_2_relu_3[0][0]
ladder__0_dropout (Dropout) (None, 524288) 0 ladder__0_ flatten [0][O0]
ladder__1_dropout (Dropout) (None, 262144) 0 ladder__1_flatten [0][O0]
ladder__2_dropout (Dropout) (None, 32768) 0 ladder__2_flatten [0][0]
mu_1 (Dense) (None, 2) 1048578 ladder__0__dropout [0][0]
log_var_1 (Dense) (None, 2) 1048578 ladder__0__dropout [0][0]
mu_2 (Dense) (None, 2) 524290 ladder_1_dropout [0][0]
log_var_2 (Dense) (None, 2) 524290 ladder__1_dropout [0][0]
mu_3 (Dense) (None, 2) 65538 ladder_2_dropout [0][0]
log_var_3 (Dense) (None, 2) 65538 ladder__2_dropout [0][0]
z_1_latent (Lambda) (None, 2) 0 mu_1[0][0]

log_var_1[0][0]
z_2_ latent (Lambda) (None, 2) 0 mu_2[0][0]

log_var_27[0][0]
z_3__latent (Lambda) (None, 2) 0 mu_3[0][0]

log_var_3[0][0]

Total params:
Trainable params: 1
Non—trainable params:

15,602,636
5,597,132
5,504

Listing 15: CelebA-VLAE Encoder

Layer (type) Output Shape Param # Connected to
z_3 (InputLayer) (None, 2) 0
generative 2 dense_ 0 (Dense) (None, 256) 768 z_3[0][0]
generative_2_dropout_0 (Dropout (None, 256) 0 generative_2_ dense_0[0][0]
generative__2_batch_norm_0 (Batc (None, 256) 1024 generative_2_dropout_0[0][0]
generative_2_relu_0 (ReLU) (None, 256) 0 generative_2_ batch_norm_0[0][0]
generative_2_ dense_1 (Dense) (None, 512) 131584 generative_2_ relu_0[0][0]
generative_2_dropout_1 (Dropout (None, 512) 0 generative_2_ dense_1[0][0]
generative_2_batch_norm_1 (Batc (None, 512) 2048 generative_2_ dropout_1[0][0]
generative_ 2 relu_1 (ReLU) (None, 512) 0 generative 2 _batch_norm_1[0][0]
z_2 (InputLayer) (None, 2) 0
concatenate 2 and_1 (Concatenat (None, 514) 0 generative_2_relu_1[0][0]
z_2[0][0]
generative__1_dense_0 (Dense) (None, 512) 263680 concatenate_2_ and_1[0][0]
generative__1_dropout_0 (Dropout (None, 512) 0 generative__1_dense_0[0][0]
generative_1_batch_norm_0 (Batc (None, 512) 2048 generative_1_dropout_0[0][0]
generative_1_relu_0 (ReLU) (None, 512) 0 generative__1_batch_norm_0[0][0]
generative 1 dense_1 (Dense) (None, 1024) 525312 generative_1_relu_0[0][0]
generative_1_ dropout__1 (Dropout (None, 1024) 0 generative_ 1 _dense_1[0][0]
generative__1_batch_norm_1 (Batc (None, 1024) 4096 generative__1_dropout__1[0][0]
generative_1_relu_1 (ReLU) (None, 1024) 0 generative_1_batch_norm_1[0][0]
z_1 (InputLayer) (None, 2) 0
concatenate_1_and_0 (Concatenat (None, 1026) 0 generative_1_relu_1[0][0]
z_1[0][0]
generative__0_dense_0 (Dense) (None, 32768) 33652736 concatenate_1_and_0[0][0]
generative_0_dropout_0 (Dropout (None, 32768) 0 generative_0_dense_0[0][0]
generative__0__batch_norm_0 (Batc (None, 32768) 131072 generative__0__dropout_0[0][0]
generative_0_relu_0 (ReLU) (None, 32768) 0 generative__0__batch_norm_0[0][0]
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generative_0_reshape_0 (Reshape (None, 8, 8, 512) 0 generative_0_relu_0[0][0]
generative_0_conv2d_transpose_0 (None, 8, 8, 1024) 8389632 generative_0_reshape_0[0][0]
generative_0_dropout_1 (Dropout (None, 8, 8, 1024) 0 generative_0__conv2d__transpose_0 [0
generative__0__batch_norm_1 (Batc (None, 8, 8, 1024) 4096 generative__0_dropout__1[0][0]
generative_0_leaky relu_ transpo (None, 8, 8, 1024) 0 generative 0__batch _norm_1[0][0]
generative_0_conv2d_transpose_1 (None, 16, 16, 512) 8389120 generative__0_leaky_ relu_transpose
generative 0_dropout_2 (Dropout (None, 16, 16, 512) 0 generative _0__conv2d_transpose_ 1[0
generative__0__batch_norm_2 (Batc (None, 16, 16, 512) 2048 generative__0_dropout_2[0][0]
generative 0_leaky relu_ transpo (None, 16, 16, 512) 0 generative 0__batch norm_2[0][0]
generative__0__conv2d_transpose_2 (None, 32, 32, 256) 2097408 generative_0__leaky_ relu__transpose
generative_0_dropout_3 (Dropout (None, 32, 32, 256) 0 generative_0_conv2d_transpose_2[0
generative__0__batch_norm_3 (Batc (None, 32, 32, 256) 1024 generative__0__dropout_3[0][0]
generative_0_leaky_ relu_transpo (None, 32, 32, 256) 0 generative__0_batch_norm_3[0][0]
generative_0__conv2d_transpose_3 (None, 64, 64, 128) 524416 generative_0_leaky_ relu_transpose
generative__0_dropout_4 (Dropout (None, 64, 64, 128) 0 generative_0_conv2d_transpose_3[0
generative_0__batch_norm_4 (Batc (None, 64, 64, 128) 512 generative_0_dropout_4[0][0]
generative_0__leaky_relu_transpo (None, 64, 64, 128) 0 generative__0__batch_norm_4[0][0]
generative_0_conv2d_transpose_4 (None, 128, 128, 64) 131136 generative__0__leaky__relu__transpose
generative__0_dropout_5 (Dropout (None, 128, 128, 64) 0 generative__0__conv2d__transpose_4 [0
generative_0__batch_norm_5 (Batc (None, 128, 128, 64) 256 generative_0_dropout_5[0][0]
generative_0_leaky_relu_transpo (None, 128, 128, 64) 0 generative_0__batch_norm_5[0][0]
generative_0_conv2d_transpose_5 (None, 128, 128, 3) 3075 generative_0_leaky_ relu_transpose
generative_0__dropout_6 (Dropout (None, 128, 128, 3) 0 generative_0_conv2d_transpose_5[0
generative_0_sigmoid_0 (Activat (None, 128, 128, 3) 0 generative__0_dropout_6[0][0]

Total params:
Trainable params:
Non—trainable params:

54,257,091
54,182,979
74,112

Listing 16: CelebA-VLAE Decoder

A.3 VAE-GAN-models

Layer (type) Output Shape Param # Connected to

encoder__input (InputLayer) (None, 28, 28, 1) 0

encoder_conv_0 (Conv2D) (None, 14, 14, 32) 320 encoder__input [0][0]
batch_normalization_2 (BatchNor (None, 14, 14, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 14, 14, 32) 0 batch_normalization_2[0][0]
encoder__conv_1 (Conv2D) (None, 7, 7, 64) 18496 re_lu_1[0][0]
batch_normalization_3 (BatchNor (None, 7, 7, 64) 256 encoder_conv_1[0][0]
re_lu_2 (ReLU) (None, 7, 7, 64) 0 batch__normalization_3[0][0]
encoder__conv_2 (Conv2D) (None, 7, 7, 128) 73856 re_lu_2[0][0]
batch_normalization_4 (BatchNor (None, 7, 7, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 7, 7, 128) 0 batch normalization 4 [0][0]
encoder_conv_3 (Conv2D) (None, 7, 7, 256) 295168 re_lu_3[0][0]

batch_ normalization 5 (BatchNor (None, 7, 7, 256) 1024 encoder_conv_3[0][0]
re_lu_4 (ReLU) (None, 7, 7, 256) 0 batch_normalization_5[0][0]
flatten__2 (Flatten) (None, 12544) 0 re_lu_4[0][0]

mu (Dense) (None, 2) 25090 flatten__2 [0][0]

log_var (Dense) (None, 2) 25090 flatten__2 [0][0]
encoder_output (Lambda) (None, 2) 0 mu[0][0]

log_var[0][0]

Total params: 439,940
Trainable params: 438,980
Non—trainable params: 960

Listing 17: MNI1ST-VAE-GAN Encoder

Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 2) 0
dense_2 (Dense) (None, 12544) 37632
reshape__1 (Reshape) (None, 7, 7, 256) 0
decoder_conv_t_0 (Conv2DTran (None, 7, 7, 256) 1048576
batch_normalization_6 (Batch (None, 7, 7, 256) 1024
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re_lu_5 (ReLU) (None, 7, 7, 256) 0
decoder_conv_t_1 (Conv2DTran (None, 7, 7, 128) 524288
batch_normalization_7 (Batch (None, 7, 7, 128) 512
re_lu_6 (ReLU) (None, 7, 7, 128) 0
decoder_conv_t_2 (Conv2DTran (None, 14, 14, 64) 131072
batch_normalization_8 (Batch (None, 14, 14, 64) 256
re_lu_7 (ReLU) (None, 14, 14, 64) 0
decoder_conv_t_3 (Conv2DTran (None, 28, 28, 1) 1024
activation_2 (Activation) (None, 28, 28, 1) 0

Total params:
Trainable params:

1,744,384
1,743,488

Non—trainable params: 896

Listing 18: MNIST-VAE-GAN Decoder
Layer (type) Output Shape Param #
discriminator__input (InputLa (None, 28, 28, 1) 0
conv2d_1 (Conv2D) (None, 14, 14, 64) 1088
leaky re_lu_1 (LeakyReLU) (None, 14, 14, 64) 0
conv2d_2 (Conv2D) (None, 7, 7, 128) 131200
batch_normalization_1 (Batch (None, 7, 7, 128) 512
conv2d_3 (Conv2D) (None, 2, 2, 1) 129
flatten_1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0

Total params:
Trainable params:
Non—trainable params:

132,934
132,678
256

Listing 19: MNI1ST-VAE-GAN Discriminator

Layer (type) Output Shape Param # Connected to

encoder__input (InputLayer) (None, 64, 64, 1) 0

encoder_conv_0 (Conv2D) (None, 32, 32, 32) 544 encoder__input [0][0]
batch_normalization_3 (BatchNor (None, 32, 32, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 32, 32, 32) 0 batch__normalization_3[0][0]
encoder_conv_1 (Conv2D) (None, 16, 16, 64) 32832 re_lu_1[0][0]
batch__normalization_4 (BatchNor (None, 16, 16, 64) 256 encoder_conv_1[0][0]
re_lu_2 (ReLU) (None, 16, 16, 64) 0 batch_normalization_4[0][0]
encoder_conv_2 (Conv2D) (None, 8, 8, 128) 131200 re_lu_2[0][0]
batch_normalization_5 (BatchNor (None, 8, 8, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 8, 8, 128) 0 batch_normalization_5[0][0]
encoder__conv_3 (Conv2D) (None, 4, 4, 256) 524544 re_lu_3[0][0]
batch_normalization_6 (BatchNor (None, 4, 4, 256) 1024 encoder_conv_3[0][0]
re_lu_4 (ReLU) (None, 4, 4, 256) 0 batch_normalization_6[0][0]
encoder_conv_4 (Conv2D) (None, 4, 4, 512) 2097664 re_lu_4[0][0]
batch_normalization_7 (BatchNor (None, 4, 4, 512) 2048 encoder_conv_4[0][0]
re_lu_5 (ReLU) (None, 4, 4, 512) 0 batch_ normalization_ 7 [0][0]
flatten__2 (Flatten) (None, 8192) 0 re_lu_5[0][0]

mu (Dense) (None, 10) 81930 flatten_ 2 [0][0]

log_var (Dense) (None, 10) 81930 flatten__2 [0][0]
encoder__output (Lambda) (None, 10) 0 mu[0][0]

log_var[0][0]

Total params: 2,954,612
Trainable params: 2,952,62
1,98

8
Non—trainable params: 4

Listing 20: dSprites-VAE-GAN Encoder

Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 10) 0
dense__2 (Dense) (None, 8192) 90112
reshape_1 (Reshape) (None, 4, 4, 512) 0
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decoder_conv_t_0 (Conv2DTran (None, 8, 8, 512) 4194304
batch_normalization_8 (Batch (None, 8, 8, 512) 2048
re_lu_6 (ReLU) (None, 8, 8, 512) 0
decoder_conv_t_1 (Conv2DTran (None, 16, 16, 256) 2097152
batch_normalization_9 (Batch (None, 16, 16, 256) 1024
re_lu_7 (ReLU) (None, 16, 16, 256) 0
decoder_conv_t_2 (Conv2DTran (None, 32, 32, 128) 524288
batch_normalization_10 (Batc (None, 32, 32, 128) 512
re_lu_8 (ReLU) (None, 32, 32, 128) 0
decoder_conv_t_3 (Conv2DTran (None, 64, 64, 1) 2048
activation_2 (Activation) (None, 64, 64, 1) 0
Total params: 6,911,488
Trainable params: 6,909,696
Non—trainable params: 1,792
Listing 21: dSprites-VAE-GAN Decoder

Layer (type) Output Shape Param #
discriminator_ input (InputLa (None, 64, 64, 1) 0
conv2d_1 (Conv2D) (None, 32, 32, 64) 1088
leaky re_ lu_1 (LeakyReLU) (None, 32, 32, 64) 0
conv2d_2 (Conv2D) (None, 16, 16, 128) 131200
batch_normalization_1 (Batch (None, 16, 16, 128) 512
conv2d_3 (Conv2D) (None, 8, 8, 256) 524544
batch_normalization_2 (Batch (None, 8, 8, 256) 1024
conv2d_4 (Conv2D) (None, 2, 2, 1) 257
flatten_1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0
Total params: 658,630
Trainable params: 657,862
Non—trainable params: 768

Listing 22: dSprites-VAE-GAN Discriminator
Layer (type) Output Shape Param # Connected to
encoder__input (InputLayer) (None, 128, 128, 3) 0
encoder_conv_0 (Conv2D) (None, 64, 64, 32) 1568 encoder__input [0][0]
batch_normalization_4 (BatchNor (None, 64, 64, 32) 128 encoder_conv_0[0][0]
re_lu_1 (ReLU) (None, 64, 64, 32) 0 batch_normalization_4[0][0]
encoder__conv_1 (Conv2D) (None, 32, 32, 64) 32832 re_lu_1[0][0]
batch_normalization_5 (BatchNor (None, 32, 32, 64) 256 encoder_conv_1[0][0]
re_lu_2 (ReLU) (None, 32, 32, 64) 0 batch_ normalization_5[0][0]
encoder_conv_2 (Conv2D) (None, 16, 16, 128) 131200 re_lu_2[0][0]
batch_normalization_6 (BatchNor (None, 16, 16, 128) 512 encoder_conv_2[0][0]
re_lu_3 (ReLU) (None, 16, 16, 128) 0 batch_normalization_6[0][0]
encoder_conv_3 (Conv2D) (None, 8, 8, 256) 524544 re_lu_3[0][0]
batch_normalization_7 (BatchNor (None, 8, 8, 256) 1024 encoder_conv_3[0][0]
re_lu_4 (ReLU) (None, 8, 8, 256) 0 batch__normalization_7[0][0]
encoder_conv_4 (Conv2D) (None, 8, 8, 512) 2097664 re_lu _4[0][0]
batch_normalization_8 (BatchNor (None, 8, 8, 512) 2048 encoder_conv_4[0][0]
re_lu_5 (ReLU) (None, 8, 8, 512) 0 batch_normalization_8[0][0]
flatten__2 (Flatten) (None, 32768) 0 re_lu_5[0][0]
mu (Dense) (None, 8) 262152 flatten_2[0][0]
log_var (Dense) (None, 8) 262152 flatten_2[0][0]
encoder__output (Lambda) (None, 8) 0 mu[0][0]

log_var[0][0]

Total params: 3,316,080
Trainable params: 3,314,096
Non—trainable params: 1,984

Listing 23: CelebA-VAE-GAN Encoder

| Layer (type)

Output Shape

Param #
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decoder__input (InputLayer) (None, 8) 0
dense_2 (Dense) (None, 32768) 294912
reshape__1 (Reshape) (None, 8, 8, 512) 0
decoder_conv_t_0 (Conv2DTran (None, 16, 16, 512) 4194304
batch_normalization_9 (Batch (None, 16, 16, 512) 2048
re_Tu_6 (ReLU) (None, 16, 16, 512) 0
decoder_conv_t 1 (Conv2DTran (None, 32, 32, 256) 2097152
batch_normalization_10 (Batc (None, 32, 32, 256) 1024
re_lu_7 (ReLU) (None, 32, 32, 256) 0
decoder_conv_t_2 (Conv2DTran (None, 64, 64, 128) 524288
batch_normalization_11 (Batc (None, 64, 64, 128) 512
re_lu_8 (ReLU) (None, 64, 64, 128) 0
decoder_conv_t_3 (Conv2DTran (None, 128, 128, 3) 6144
activation_2 (Activation) (None, 128, 128, 3) 0

Total params:
Trainable params:

7,120,384
7,118,592

Non—trainable params: 1,792
Listing 24: CelebA-VAE-GAN Decoder

Layer (type) Output Shape Param #
discriminator__input (InputLa (None, 128, 128, 3) 0
conv2d_1 (Conv2D) (None, 64, 64, 64) 3136
leaky_ re_lu_1 (LeakyReLU) (None, 64, 64, 64) 0
conv2d_2 (ConvaD) (None, 32, 32, 128) 131200
batch__normalization_1 (Batch (None, 32, 32, 128) 512
conv2d_3 (Conv2D) (None, 16, 16, 256) 524544
batch_normalization_2 (Batch (None, 16, 16, 256) 1024
leaky re_lu_2 (LeakyReLU) (None, 16, 16, 256) 0
conv2d_4 (Conv2D) (None, 8, 8, 512) 2097664
batch_normalization_3 (Batch (None, 8, 8, 512) 2048
leaky_ re_lu_3 (LeakyReLU) (None, 8, 8, 512) 0
conv2d_5 (Conv2D) (None, 2, 2, 1) 513
flatten_1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0
Total params: 2,760,646
Trainable params: 2,758,854
Non—trainable params: 1,792

Listing 25: CelebA-VAE-GAN Discriminator

A.4 VLAE-GAN-models

Layer (type) Output Shape Param # Connected to

vlae gan_encoder_ input (InputLa (None, 28, 28, 1) 0

inference_0_conv2d_0 (Conv2D) (None, 14, 14, 64) 1664 vlae__gan__encoder__input [0][0]
inference_0_relu_0 (ReLU) (None, 14, 14, 64) 0 inference_0_conv2d_ 0[0][0]
inference__1_conv2d_0 (Conv2D) (None, 7, 7, 128) 73856 inference_0_relu_0[0][0]
inference__1_relu_0 (ReLU) (None, 7, 7, 128) 0 inference_1_conv2d_0[0][0]
ladder__2_conv2d_0 (Conv2D) (None, 7, 7, 256) 295168 inference__1_relu_0[0][0]
ladder_2_relu_0 (ReLU) (None, 7, 7, 256) 0 ladder__2_conv2d_0[0][0]
ladder_ 0_conv2d_0 (Conv2D) (None, 14, 14, 64) 1664 vlae__gan__encoder__input [0][0]
ladder_1_conv2d_0 (Conv2D) (None, 7, 7, 128) 204928 inference_0_relu_0[0][0]
ladder_2_ conv2d_1 (Conv2D) (None, 7, 7, 512) 1180160 ladder_2_ relu_0[0][0]
ladder_0_relu_0 (ReLU) (None, 14, 14, 64) 0 ladder_0_conv2d_0[0][0]
ladder_1_relu_0 (ReLU) (None, 7, 7, 128) 0 ladder__1_conv2d_0[0][0]
ladder__2_ relu_1 (ReLU) (None, 7, 7, 512) 0 ladder__2_conv2d_1[0][0]
ladder__0_ flatten (Flatten) (None, 12544) 0 ladder_0_relu_0[0][0]
ladder__1_ flatten (Flatten) (None, 6272) 0 ladder_1_relu_0[0][0]
ladder__2_flatten (Flatten) (None, 25088) 0 ladder_2_relu_1[0][0]

mu_1 (Dense) (None, 2) 25090 ladder_0_ flatten [0][O0]




log_var_1 (Dense) (None, 2) 25090 ladder__0_ flatten [0][O0]

mu_2 (Dense) (None, 2) 12546 ladder__1_ flatten [0][O0]

log_var_2 (Dense) (None, 2) 12546 ladder__1_flatten [0][O0]

mu_3 (Dense) (None, 2) 50178 ladder__2_flatten [0][0]

log_var_3 (Dense) (None, 2) 50178 ladder_2_ flatten [0][O0]

z_1_latent (Lambda) (None, 2) 0 mu_1[0][0]
log_var_1[0][0]

z_2_ latent (Lambda) (None, 2) 0 mu_2[0][0
log_var_2[0][0]

z_3_latent (Lambda) (None, 2) 0 mu_3[0][0]
log_var_3[0][0]

Total params: 1,933,068

Trainable params: 1,933,068

Non—trainable params:

Listing 26: MNI1ST-VLAE-GAN Encoder

Layer (type) Output Shape Param # Connected to

z_3 (InputLayer) (None, 2) 0

generative 2 dense_0 (Dense) (None, 1024) 3072 z_3[0][0]

generative 2 _ relu_0 (ReLU) (None, 1024) 0 generative 2 dense_0[0][0]

generative_2_ dense_1 (Dense) (None, 1024) 1049600 generative_2_relu_0[0][0]

generative_2_ relu_1 (ReLU) (None, 1024) 0 generative 2 dense_1[0][0]

z_2 (InputLayer) (None, 2) 0

concatenate_ 2 and_ 1 (Concatenat (None, 1026) 0 generative 2 relu_1[0][0]
z_2[0][0]

generative__1_dense_0 (Dense) (None, 1024) 1051648 concatenate_2_and_1[0][0]

generative_1_relu_0 (ReLU) (None, 1024) 0 generative_1_dense_0[0][0]

generative__1_dense_1 (Dense) (None, 1024) 1049600 generative 1 _relu_0[0][0]

generative_1_relu_1 (ReLU) (None, 1024) 0 generative__1_dense_1[0][0]

z_1 (InputLayer) (None, 2) 0

concatenate_1_and_0 (Concatenat (None, 1026) 0 generative_1_relu_1[0][0]
z_1[0][0]

generative__0_dense_0 (Dense) (None, 25088) 25765376 concatenate_1_and_0[0][0]

generative_0_relu_0 (ReLU) (None, 25088) 0 generative_0_dense_0[0][0]

generative__0_reshape_0 (Reshape (None, 7, 7, 512) 0 generative_0_relu_0[0][0]

generative_0_conv2d__transpose_0 (None, 14, 14, 512) 4194304 generative_0_reshape_0[0][0]

generative_0_relu_1 (ReLU) (None, 14, 14, 512) 0 generative_0_conv2d_transpose_0[0

generative_0_conv2d_transpose_1 (None, 28, 28, 256) 2097152 generative_0_relu_1[0][0]

generative 0_relu_2 (ReLU) (None, 28, 28, 256) 0 generative_0__conv2d_transpose_1[0

generative_0_conv2d_transpose_2 (None, 28, 28, 1) 4096 generative_0_relu_2[0][0]

generative 0__activation_ 0 (Acti (None, 28, 28, 1) 0 generative_0__conv2d__transpose_2[0

Total params: 35,214,848
Trainable params: 35,214,848
Non—trainable params: 0

Listing 27: MNIST-VLAE-GAN Decoder

Layer (type) Output Shape Param #
discriminator__input (InputLa (None, 28, 28, 1) 0
conv2d_1 (Conv2D) (None, 14, 14, 64) 1088
leaky re_lu_1 (LeakyReLU) (None, 14, 14, 64) 0
conv2d_2 (Conv2D) (None, 7, 7, 128) 131200
batch_normalization_1 (Batch (None, 7, 7, 128) 512
conv2d_3 (Conv2D) (None, 2, 2, 1) 129
flatten_1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0
Total params: 132,934

Trainable params: 132,678

Non—trainable params: 256

Listing 28:

MNIST-VLAE-GAN Discriminator

| Layer (type) Output

Shape

Param #

XX

Connected to




vlae__gan_encoder__input (InputLa (None, 64, 64, 1) 0
inference_0_conv2d_0 (Conv2D) (None, 32, 32, 32) 544 vlae__gan__encoder__input [0][0]
inference_0__batch_norm_0 (Batch (None, 32, 32, 32) 128 inference__0_conv2d_0[0][0]
inference__0_relu_0 (ReLU) (None, 32, 32, 32) 0 inference_0__batch_norm_0[0][0]
inference_0_conv2d_1 (Conv2D) (None, 32, 32, 32) 16416 inference_0_relu_0[0][0]
inference_0__batch_norm_1 (Batch (None, 32, 32, 32) 128 inference_0_conv2d_1[0][0]
inference_ 0_relu_1 (ReLU) (None, 32, 32, 32) 0 inference_0_batch_ norm_ 1[0][0]
inference__1_conv2d_0 (Conv2D) (None, 16, 16, 64) 32832 inference_0_relu_1[0][0]
inference_1_ batch_norm_0 (Batch (None, 16, 16, 64) 256 inference_1_conv2d_0[0][0]
inference__1_relu_0 (ReLU) (None, 16, 16, 64) 0 inference__1_batch_norm_0[0][0]
inference__1_conv2d_1 (Conv2D) (None, 16, 16, 64) 65600 inference__1_relu_0[0][0]
inference__1_ batch_norm_1 (Batch (None, 16, 16, 64) 256 inference__1_conv2d_1[0][0]
inference__1_relu_1 (ReLU) (None, 16, 16, 64) 0 inference_1_batch_norm_1[0][0]
ladder_2_conv2d_0 (Conv2D) (None, 8, 8, 256) 262400 inference__1_relu_1[0][0]
ladder__2_batch_norm_0 (BatchNor (None, 8, 8, 256) 1024 ladder__2_conv2d_0[0][0]
ladder__2_ relu_0 (ReLU) (None, 8, 8, 256) 0 ladder__2_batch_norm_0[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 32, 32, 128) 2176 vlae__gan__encoder__input [0][0]
ladder__1_conv2d_0 (Conv2D) (None, 16, 16, 256) 131328 inference_0_relu_1[0][0]
ladder_2_conv2d_1 (Conv2D) (None, 4, 4, 512) 2097664 ladder_2_relu_0[0][0]
ladder_0__batch_norm_0 (BatchNor (None, 32, 32, 128) 512 ladder_0_conv2d_0[0][0]
ladder__1_batch_norm_0 (BatchNor (None, 16, 16, 256) 1024 ladder_1_conv2d_0[0][0]
ladder_2_batch_norm_1 (BatchNor (None, 4, 4, 512) 2048 ladder_2_conv2d_1[0][0]
ladder_0_relu_0 (ReLU) (None, 32, 32, 128) 0 ladder__0__batch_norm_0[0][0]
ladder__1_relu_0 (ReLU) (None, 16, 16, 256) O ladder__1_batch_norm_0[0][0]
ladder_2_relu_1 (ReLU) (None, 4, 4, 512) 0 ladder__2_batch_norm_1[0][0]
ladder_ 0_conv2d_1 (Conv2D) (None, 32, 32, 128) 262272 ladder_0_relu_0[0][0]
ladder_1_conv2d_1 (Conv2D) (None, 16, 16, 256) 1048832 ladder__1_relu_0[0][0]
ladder_2_conv2d_2 (Conv2D) (None, 2, 2, 1024) 8389632 ladder_2_ relu_1[0][0]
ladder_0__batch_norm_1 (BatchNor (None, 32, 32, 128) 512 ladder_0_conv2d_1[0][0]
ladder_1_batch_norm_1 (BatchNor (None, 16, 16, 256) 1024 ladder__1_conv2d_1[0][0]
ladder__2_batch_norm_2 (BatchNor (Nomne, 2, 2, 1024) 4096 ladder_2_ conv2d_2[0][0]
ladder_0_relu_1 (ReLU) (None, 32, 32, 128) 0 ladder__0_batch_norm_1[0][0]
ladder__1_relu_1 (ReLU) (None, 16, 16, 256) 0 ladder__1_batch_norm_1[0][0]
ladder__2_relu_2 (ReLU) (None, 2, 2, 1024) 0 ladder__2_batch_norm_2[0][0]
ladder_0_ flatten (Flatten) (None, 131072) 0 ladder_0_relu_1[0][0]
ladder__1_flatten (Flatten) (None, 65536) 0 ladder__1_relu_1[0][0]
ladder__2_flatten (Flatten) (None, 4096) 0 ladder_2_relu_2[0][0]
mu_1 (Dense) (None, 4) 524292 ladder_0_ flatten [0][O0]
log_var_1 (Dense) (None, 4) 524292 ladder__0_ flatten [0][0]
mu_2 (Dense) (None, 4) 262148 ladder__1_flatten [0][0]
log_var_2 (Dense) (None, 4) 262148 ladder__1_flatten [0][0]
mu_3 (Dense) (None, 4) 16388 ladder_2_flatten [0][0]
log_var_3 (Dense) (None, 4) 16388 ladder__2_flatten [0][0]
z_1_latent (Lambda) (None, 4) 0 mu_1[0][0]

log_var_1{0][0]
z_2_ latent (Lambda) (None, 4) 0 mu_2[0][0]

log_var_2[0][0]
z_3_latent (Lambda) (None, 4) 0 mu_3[0][0]

log_var_3[0][0]

Total params: 13,926,360
Trainable params: 13,920,856
Non—trainable params: 5,504

Listing 29: dSprites-VLAE-GAN Encoder

Layer (type) Output Shape Param # Connected to

z_3 (InputLayer) (None, 4) 0

generative 2 dense_0 (Dense) (None, 1024) 5120 z_3[0][0]
generative_2_batch_norm_0 (Batc (None, 1024) 4096 generative_2_ dense_0[0][0]
generative_ 2 relu_0 (ReLU) (None, 1024) 0 generative_2_batch_norm_0[0][0]
generative 2 dense_1 (Dense) (None, 1024) 1049600 generative 2 relu_0[0][0]
generative 2 batch_norm_1 (Batc (None, 1024) 4096 generative_2_ dense_1[0][0]
generative 2 _ relu_1 (ReLU) (None, 1024) 0 generative_2_ batch_norm_1[0][0]

XXI




z_2 (InputLayer) (None, 4) 0
concatenate_2 and_1 (Concatenat (None, 1028) 0 generative_2_ relu_1[0][0]
z_2[0][0]
generative__1_dense_0 (Dense) (None, 1024) 1053696 concatenate_2_and_1[0][0]
generative__1_batch_norm_0 (Batc (None, 1024) 4096 generative_1_dense_0[0][0]
generative 1 _relu_0 (ReLU) (None, 1024) 0 generative 1 batch _norm_0[0][0]
generative__1_dense_1 (Dense) (None, 1024) 1049600 generative_1_relu_0[0][0]
generative_1_batch_norm_1 (Batc (None, 1024) 4096 generative_1_dense_1[0][0]
generative__1_relu_1 (ReLU) (None, 1024) 0 generative__1_batch_norm_1[0][0]
z_1 (InputLayer) (None, 4) 0
concatenate_1 _and_0 (Concatenat (None, 1028) 0 generative 1 _relu_1[0][0]
z_1[0][0]
generative_0_dense_0 (Dense) (None, 4096) 4214784 concatenate_1_and_0[0][0]
generative__0__batch_norm_0 (Batc (None, 4096) 16384 generative_0_dense_0[0][0]
generative_0_relu_0 (ReLU) (None, 4096) 0 generative__0__batch_norm_0[0][0]
generative 0_reshape_ 0 (Reshape (None, 2, 2, 1024) 0 generative_0_relu_0[0][0]
generative__0__conv2d__transpose_0 (None, 4, 4, 1024) 16777216 generative__0_reshape_0[0][0]
generative__0__batch_norm_1 (Batc (None, 4, 4, 1024) 4096 generative_0_conv2d_transpose_0 [0
generative_0_relu_1 (ReLU) (None, 4, 4, 1024) 0 generative_0__batch_norm_1[0][0]
generative_0_conv2d_transpose_1 (None, 8, 8, 512) 8388608 generative_0_relu_1[0][0]
generative_ 0__batch_norm_2 (Batc (None, 8, 8, 512) 2048 generative_0_conv2d_transpose_1[0
generative 0_relu_2 (ReLU) (None, 8, 8, 512) 0 generative_0__batch_norm_2[0][0]
generative_0__conv2d_transpose_2 (None, 16, 16, 256) 2097152 generative_0_relu_2[0][0]
generative_0_batch_norm_3 (Batc (None, 16, 16, 256) 1024 generative_0__conv2d_transpose_2[0
generative_0_relu_3 (ReLU) (None, 16, 16, 256) 0 generative_0__batch_norm_3[0][0]
generative__0__conv2d_transpose_3 (None, 32, 32, 128) 524288 generative 0_relu_3[0][0]
generative__0__batch_norm_4 (Batc (None, 32, 32, 128) 512 generative_0_conv2d_transpose_3[0
generative_0_relu_4 (ReLU) (None, 32, 32, 128) 0 generative_0__batch_norm_4[0][0]
generative_0_conv2d_transpose_4 (None, 64, 64, 1) 2048 generative_ 0_relu_4[0][0]
generative_0__activation_ 0 (Acti (None, 64, 64, 1) 0 generative_0_conv2d_transpose_4[0

Total params: 35,202,560
Trainable params: 35,182,336
Non—trainable params: 20,224

Listing 30: dSprites-VLAE-GAN Decoder

Layer (type) Output Shape Param #
discriminator__input (InputLa (None, 64, 64, 1) 0
conv2d_1 (Conv2D) (None, 32, 32, 64) 1088
leaky_re_lu_1 (LeakyReLU) (None, 32, 32, 64) 0
conv2d_2 (Conv2D) (None, 16, 16, 128) 131200
batch_normalization_1 (Batch (None, 16, 16, 128) 512
conv2d_3 (Conv2D) (None, 8, 8, 256) 524544
batch_normalization_2 (Batch (None, 8, 8, 256) 1024
conv2d_4 (Conv2D) (None, 2, 2, 1) 257
flatten_1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0

Total params: 658,630
Trainable params: 657,862
Non—trainable params: 768

Listing 31: dSprites-VLAE-GAN Discriminator

Layer (type) Output Shape Param # Connected to

vlae gan_encoder_input (InputLa (None, 128, 128, 3) 0

inference__0_conv2d_0 (Conv2D) (None, 64, 64, 32) 1568 vlae__gan__encoder__input [0][0]
inference_0__batch_norm_0 (Batch (None, 64, 64, 32) 128 inference_0_conv2d_0[0][0]
inference__0_relu_0 (ReLU) (None, 64, 64, 32) 0 inference_0__batch_norm_0[0][0]
inference_0_conv2d_1 (Conv2D) (None, 64, 64, 32) 16416 inference_0_relu_0[0][0]
inference_0__batch_norm_1 (Batch (None, 64, 64, 32) 128 inference_0_conv2d_1[0][0]
inference__0_relu_1 (ReLU) (None, 64, 64, 32) 0 inference_0__batch_norm_1[0][0]
inference__1_conv2d_0 (Conv2D) (None, 32, 32, 64) 32832 inference_0_relu_1[0][0]
inference__1_batch_norm_0 (Batch (None, 32, 32, 64) 256 inference__1_conv2d_0[0][0]
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inference__1_relu_0 (ReLU) (None, 32, 32, 64) 0 inference__1_batch_norm_0[0][0]
inference__1_conv2d_1 (Conv2D) (None, 32, 32, 64) 65600 inference__1_relu_0[0][0]
inference__1_batch_norm_1 (Batch (None, 32, 32, 64) 256 inference__1_conv2d_1[0][0]
inference__1_relu_1 (ReLU) (None, 32, 32, 64) 0 inference_1_batch_norm_1[0][0]
ladder_2_conv2d_0 (Conv2D) (None, 16, 16, 256) 262400 inference 1 _relu_1[0][0]
ladder__2_batch_norm_0 (BatchNor (None, 16, 16, 256) 1024 ladder__2_conv2d_0[0][0]
ladder_2_ relu_0 (ReLU) (None, 16, 16, 256) 0 ladder_2_ batch_norm_0[0][0]
ladder__2_conv2d_1 (Conv2D) (None, 8, 8, 512) 2097664 ladder_2_relu_0[0][0]
ladder_2_batch_norm_1 (BatchNor (None, 8, 8, 512) 2048 ladder_2_conv2d_1[0][0]
ladder__2_ relu_1 (ReLU) (None, 8, 8, 512) 0 ladder__2_batch_norm_1[0][0]
ladder_0_conv2d_0 (Conv2D) (None, 64, 64, 128) 6272 vlae__gan__encoder__input [0][0]
ladder__1_conv2d_0 (Conv2D) (None, 32, 32, 256) 131328 inference_0_relu_1[0][0]
ladder__2_conv2d_2 (Conv2D) (None, 8, 8, 512) 4194816 ladder_2_relu_1[0][0]
ladder_0_batch_norm_0 (BatchNor (None, 64, 64, 128) 512 ladder_0_conv2d_0[0][0]
ladder__1_batch_norm_0 (BatchNor (None, 32, 32, 256) 1024 ladder__1_conv2d_0[0][0]
ladder_2_batch_norm_2 (BatchNor (None, 8, 8, 512) 2048 ladder_2_conv2d_2[0][0]
ladder_0_relu_0 (ReLU) (None, 64, 64, 128) 0 ladder__0__batch_norm_0[0][0]
ladder__1_relu_0 (ReLU) (None, 32, 32, 256) 0 ladder__1_batch_norm_0[0][0]
ladder_2_relu_2 (ReLU) (None, 8, 8, 512) 0 ladder__2_batch_norm_2[0][0]
ladder_0_conv2d_1 (Conv2D) (None, 64, 64, 128) 262272 ladder_0_relu_0[0][0]
ladder_1_conv2d_1 (Conv2D) (None, 32, 32, 256) 1048832 ladder_1_relu_0[0][0]
ladder__2_conv2d_3 (Conv2D) (None, 8, 8, 512) 4194816 ladder_2_ relu_2[0][0]
ladder_0_batch_norm_1 (BatchNor (None, 64, 64, 128) 512 ladder_0_conv2d_1[0][0]
ladder__1_batch_norm_1 (BatchNor (None, 32, 32, 256) 1024 ladder__1_conv2d_1[0][0]
ladder_2_batch_norm_3 (BatchNor (None, 8, 8, 512) 2048 ladder__2_conv2d_3[0][0]
ladder_0_relu_1 (ReLU) (None, 64, 64, 128) 0 ladder__0__batch_norm_1[0][0]
ladder__1_relu_1 (ReLU) (None, 32, 32, 256) O ladder__1_batch_norm_1[0][0]
ladder__2_relu_3 (ReLU) (None, 8, 8, 512) 0 ladder_2_batch_norm_3[0][0]
ladder__0_ flatten (Flatten) (None, 524288) 0 ladder_0_relu_1[0][0]
ladder__1_flatten (Flatten) (None, 262144) 0 ladder_1_relu_1[0][0]
ladder__2_flatten (Flatten) (None, 32768) 0 ladder_2_ relu_3[0][0]
mu_1 (Dense) (None, 2) 1048578 ladder__0_ flatten [0][0]
log_var_1 (Dense) (None, 2) 1048578 ladder_0_ flatten [0][O0]
mu_2 (Dense) (None, 2) 524290 ladder__1_ flatten [0][0]
log_var_2 (Dense) (None, 2) 524290 ladder__1_ flatten [0][0]
mu_3 (Dense) (None, 2) 65538 ladder__2_flatten [0][0]
log_var_3 (Dense) (None, 2) 65538 ladder__2_flatten [0][0]
z_1_ latent (Lambda) (None, 2) 0 mu_1[0][0]

log_var_1[0][0]
z_2_latent (Lambda) (None, 2) 0 mu_2[0][0]

log_var_2[0][0]
z__3_ latent (Lambda) (None, 2) 0 mu 3[0][0]

log_var_3[0][0]

Total params: 15,602,636
Trainable params: 15,597
Non—trainable params: 5,

Listing 32: CelebA-VLAE-GAN Encoder

Layer (type) Output Shape Param # Connected to
z_3 (InputLayer) (None, 2) 0
generative_2_ dense_0 (Dense) (None, 256) 768 z_3[0][0]
generative_2_batch_norm_0 (Batc (None, 256) 1024 generative_2_ dense_0[0][0]
generative 2 _ relu_0 (ReLU) (None, 256) 0 generative_2_ batch_norm_0[0][0]
generative 2 dense_1 (Dense) (None, 512) 131584 generative_2_relu_0[0][0]
generative_2_ batch_norm_1 (Batc (None, 512) 2048 generative 2 dense_1[0][0]
generative_2_relu_1 (ReLU) (None, 512) 0 generative_2_batch_norm_1[0][0]
z_2 (InputLayer) (None, 2) 0
concatenate_2_ and_1 (Concatenat (None, 514) 0 generative_2_ relu_1[0][0]

2 2(0][0)]
generative_ 1 dense_0 (Dense) (None, 512) 263680 concatenate_2_ and_1[0][0]
generative_1_ batch_norm_0 (Batc (None, 512) 2048 generative_ 1 _dense_0[0][0]
generative 1 _relu_0 (ReLU) (None, 512) 0 generative_1_batch_norm_0[0][0]
generative_1_dense_1 (Dense) (None, 1024) 525312 generative_1_relu_0[0][0]
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generative_1_batch_norm_1 (Batc (None, 1024) 4096 generative__1_dense_1[0][0]
generative 1 relu_1 (ReLU) (None, 1024) 0 generative__1_batch_norm_1[0][0]
z_1 (InputLayer) (None, 2) 0
concatenate_1_and_0 (Concatenat (None, 1026) 0 generative_1_relu_1[0][0]

z 100][0]
generative_0__dense_0 (Dense) (None, 32768) 33652736 concatenate_1_and_0[0][0]
generative_0__batch_norm_0 (Batc (None, 32768) 131072 generative_0_dense_0[0][0]
generative 0_relu_0 (ReLU) (None, 32768) 0 generative__0__batch_norm_0[0][0]
generative__0_reshape_0 (Reshape (None, 8, 8, 512) 0 generative_0_relu_0[0][0]
generative_0_conv2d_transpose_0 (None, 8, 8, 1024) 8388608 generative__0_reshape_0[0][0]
generative__0__batch_norm_1 (Batc (None, 8, 8, 1024) 4096 generative__0__conv2d__transpose_0 [0
generative_0_relu_1 (ReLU) (None, 8, 8, 1024) 0 generative_0__batch_norm_1[0][0]
generative_0_conv2d__transpose_1 (None, 16, 16, 512) 8388608 generative_ 0_relu_1[0][0]
generative__0__batch_norm_2 (Batc (None, 16, 16, 512) 2048 generative_0_conv2d_transpose_1[0
generative _0_relu_2 (ReLU) (None, 16, 16, 512) 0 generative__0__batch_norm_2[0][0]
generative__0__conv2d_transpose_2 (None, 32, 32, 256) 2097152 generative_0_relu_2[0][0]
generative_0__batch_norm_3 (Batc (None, 32, 32, 256) 1024 generative_0_conv2d_transpose_2[0
generative_0_relu_3 (ReLU) (None, 32, 32, 256) 0 generative_0__batch_norm_3[0][0]
generative_0_conv2d_transpose_3 (None, 64, 64, 128) 524288 generative_0_relu_3[0][0]
generative_0_batch_norm_4 (Batc (None, 64, 64, 128) 512 generative_0_conv2d_transpose_3[0
generative_0_relu_4 (ReLU) (None, 64, 64, 128) 0 generative__0__batch_norm_4[0][0]
generative_0_conv2d_transpose_4 (None, 128, 128, 64) 131072 generative_0_relu_4[0][0]
generative_0__batch_norm_5 (Batc (None, 128, 128, 64) 256 generative_0__conv2d_transpose_4[0
generative_0_relu_5 (ReLU) (None, 128, 128, 64) 0 generative__0__batch_norm_5[0][0]
generative_0__conv2d_transpose_5 (None, 128, 128, 3) 3072 generative 0_relu_5[0][0]
generative_0_activation_0 (Acti (None, 128, 128, 3) 0 generative_0_conv2d_transpose_5[0

Total params:
Trainable params:
Non—trainable params:

54,255,104
54,180,992
74,112

Listing 33: CelebA-VLAE-GAN Decoder

Layer (type) Output Shape Param #
discriminator_input (InputLa (None, 128, 128, 3) 0
conv2d_1 (Conv2D) (None, 64, 64, 64) 3136
leaky_re_lu_1 (LeakyReLU) (None, 64, 64, 64) 0
conv2d_2 (Conv2D) (None, 32, 32, 128) 131200
batch_normalization_1 (Batch (None, 32, 32, 128) 512
conv2d_3 (Conv2D) (None, 16, 16, 256) 524544
batch_normalization_2 (Batch (None, 16, 16, 256) 1024
leaky re_ lu_2 (LeakyReLU) (None, 16, 16, 256) 0
conv2d_4 (Conv2D) (None, 8, 8, 512) 2097664
batch_normalization_3 (Batch (None, 8, 8, 512) 2048
leaky_ re_lu_3 (LeakyReLU) (None, 8, 8, 512) 0
conv2d_5 (Conv2D) (None, 2, 2, 1) 513
flatten_ 1 (Flatten) (None, 4) 0
dense_1 (Dense) (None, 1) 5
activation_1 (Activation) (None, 1) 0
Total params: 2,760,646
Trainable params: 2,758,854
Non—trainable params: 1,792

Listing 34: CelebA-VLAE-GAN Discriminator

A.5 AlexNet Classifier

Layer (type) Output Shape Param #
model__input (InputLayer) (None, 224, 224, 3) 0
conv2d_1 (Conv2D) (None, 56, 56, 96) 34944
batch_normalization_1 (Batch (None, 56, 56, 96) 384
re_lu_1 (ReLU) (None, 56, 56, 96) 0

max_ pooling2d__1 (MaxPooling2 (None, 28, 28, 96) 0
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conv2d_2 (Conv2D) (None, 28, 28, 256) 614656
batch_normalization_ 2 (Batch (None, 28, 28, 256) 1024
re_lu_2 (ReLU) (None, 28, 28, 256) 0
max_ pooling2d_2 (MaxPooling2 (None, 14, 14, 256) 0
conv2d_3 (Conv2D) (None, 14, 14, 384) 885120
batch_normalization_3 (Batch (None, 14, 14, 384) 1536
re_lu_3 (ReLU) (None, 14, 14, 384) 0
conv2d_4 (ConvaD) (None, 14, 14, 384) 1327488
batch_ normalization 4 (Batch (None, 14, 14, 384) 1536
re_lu_4 (ReLU) (None, 14, 14, 384) 0
conv2d_5 (Conv2D) (None, 14, 14, 256) 884992
batch_normalization_5 (Batch (None, 14, 14, 256) 1024
re_lu_5 (ReLU) (None, 14, 14, 256) 0
max__pooling2d_3 (MaxPooling2 (Nomne, 7, 7, 256) 0
flatten_1 (Flatten) (None, 12544) 0
dense_1 (Dense) (None, 4096) 51384320
re_lu_6 (ReLU) (None, 4096) 0
dropout_1 (Dropout) (None, 4096) 0
dense_2 (Dense) (None, 4096) 16781312
re_lu_7 (ReLU) (None, 4096) 0
dropout__2 (Dropout) (None, 4096) 0
dense_3 (Dense) (None, 1000) 4097000
softmax_1 (Softmax) (None, 1000) 0
Total params: 76,015,336
Trainable params: 76,012,584
Non—trainable params: 2,752
Listing 35: Alexnet Classifier

A.6 AlexNet-VAE
Layer (type) Output Shape Param # Connected to
model__input (InputLayer) (None, 224, 224, 3) 0
conv2d_1 (Conv2D) (None, 56, 56, 96) 34944 model input [0][0]
batch_normalization_1 (BatchNor (None, 56, 56, 96) 384 conv2d_1[0][0]
re_lu_1 (ReLU) (None, 56, 56, 96) 0 batch_normalization_1[0][0]
max__pooling2d_1 (MaxPooling2D) (None, 28, 28, 96) 0 re_lu_1[0][0]
conv2d_2 (Conv2D) (None, 28, 28, 256) 614656 max_ pooling2d_1[0][0]
batch_normalization_2 (BatchNor (None, 28, 28, 256) 1024 conv2d_2[0][0]
re_lu_2 (ReLU) (None, 28, 28, 256) 0 batch_normalization_2[0][0]
max__pooling2d_2 (MaxPooling2D) (None, 14, 14, 256) 0 re_lu_2[0][0]
conv2d_3 (Conv2D) (None, 14, 14, 384) 885120 max__pooling2d_2[0][0]
batch_normalization_3 (BatchNor (None, 14, 14, 384) 1536 conv2d_3[0][0]
re_lu_3 (ReLU) (None, 14, 14, 384) 0 batch_normalization_3[0][0]
conv2d_4 (Conv2D) (None, 14, 14, 384) 1327488 re_lu_3[0][0]
batch_normalization_4 (BatchNor (None, 14, 14, 384) 1536 conv2d_4[0][0]
re_lu_4 (ReLU) (None, 14, 14, 384) O batch_normalization_4[0][0]
conv2d_5 (Conv2D) (None, 14, 14, 256) 884992 re_lu_4[0][0]
batch_normalization_5 (BatchNor (None, 14, 14, 256) 1024 conv2d_5[0][0]
re_lu_5 (ReLU) (None, 14, 14, 256) 0 batch_ normalization_ 5[0][0]
max__pooling2d_3 (MaxPooling2D) (None, 7, 7, 256) 0 re_lu_5[0][0]
flatten 1 (Flatten) (None, 12544) 0 max__pooling2d_3[0][0]
dense_1 (Dense) (None, 4096) 51384320 flatten__1 [0][0]
re_lu_6 (ReLU) (None, 4096) 0 dense_1[0][0]
dense_2 (Dense) (None, 4096) 16781312 re_lu_6[0][0]
re_lu_7 (ReLU) (None, 4096) 0 dense_2[0][0]
mu (Dense) (None, 2000) 8194000 re_lu_7[0][0]
log_var (Dense) (None, 2000) 8194000 re_lu_T7[0][0]
encoder__output (Lambda) (None, 2000) 0 mu(0][0]

log_var[0][0]
Total params: 88,306,336
Trainable params: 88,303,584
Non—trainable params: 2,752
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Listing 36: AlexNet-VAE Encoder

Layer (type) Output Shape Param #
decoder__input (InputLayer) (None, 2000) 0
dense_3 (Dense) (None, 4096) 8196096
re_lu_8 (ReLU) (None, 4096) 0
dense_4 (Dense) (None, 12544) 51392768
re_lu_9 (ReLU) (None, 12544) 0
dense_5 (Dense) (None, 12544) 157364480
re_lu_10 (ReLU) (None, 12544) 0
reshape_ 1 (Reshape) (None, 7, 7, 256) 0
conv2d__transpose_1 (Conv2DTr (None, 14, 14, 384) 885120
batch_normalization_6 (Batch (None, 14, 14, 384) 1536
re_lu_ 11 (ReLU) (None, 14, 14, 384) 0
conv2d_transpose_2 (Conv2DTr (None, 14, 14, 384) 1327488
batch_normalization_7 (Batch (None, 14, 14, 384) 1536
re_lu_12 (ReLU) (None, 14, 14, 384) 0
conv2d_transpose_ 3 (Conv2DTr (None, 28, 28, 256) 884992
batch_normalization_8 (Batch (None, 28, 28, 256) 1024
re_lu_13 (ReLU) (None, 28, 28, 256) 0
conv2d__transpose_4 (Conv2DTr (None, 56, 56, 96) 614496
batch_normalization_9 (Batch (None, 56, 56, 96) 384
re_lu_14 (ReLU) (None, 56, 56, 96) 0
conv2d__transpose_5 (Conv2DTr (None, 224, 224, 3) 34851
batch_normalization_10 (Batc (None, 224, 224, 3) 12
activation_1 (Activation) (None, 224, 224, 3) 0

Total params: 220,704,783
Trainable params: 220,702,537
Non—trainable params: 2,246

Listing 37: AlexNet-VAE Decoder
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B Additional Plots For Section
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Figure 57: Feature map activities for MNIST-WLAH-factor-1. Each boxplot corresponds to the
distribution of the mean value of one feature map after the convolution.
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Layer. inference_0_few_active_0

Factor 1 - Inactive Maps
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Figure 58: Activities of only the {%] most active feature maps in MNIST-NLAF-factor-1. Each
boxplot corresponds to the distribution of the mean value of one feature map after the convolu-

tion. Less active feature maps are set to their mean values.
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Layer: inference_0_conv2d_0
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Figure 59: Feature map activities for MNIST-NLAH-factor-2. Each boxplot corresponds to the
distribution of the mean value of one feature map after the convolution.
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Layer. inference_0_few_active_0

Factor 2 - Inactive Maps
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Figure 60: Activities of only the {%] most active feature maps in MNIST-NLAF-factor-2. Each
boxplot corresponds to the distribution of the mean value of one feature map after the convolu-

tion. Less active feature maps are set to their mean values.
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C Additional Plots For Section
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(a) Latent space traversal from Square — Ellipse

(b) Latent space traversal from Ellipse — Heart

(c) Latent space traversal from Heart — Square

Figure 61: Latent space traversal between latent space representations of images with certain
shapes for 7,500-AH. Color-values were inverted for this plot.

(a) Latent space traversal from Square — Ellipse

(b) Latent space traversal from Ellipse — Heart

(c) Latent space traversal from Heart — Square

Figure 62: Latent space traversal between latent space representations of images with certain
shapes for 5,000-MAE. Color-values were inverted for this plot.
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D Feature Extraction Network - Section

Layer (type) Output Shape Param #
discriminator input (InputLa (None, 64, 64, 1) 0
conv2d_91 (Conv2D) (None, 32, 32, 64) 1664
batch normalization 114 (Bat (None, 32, 32, 64) 256
leaky re_lu_55 (LeakyReLU) (None, 32, 32, 64) 0
conv2d_92 (Conv2D) (None, 16, 16, 128) 204928
batch normalization 115 (Bat (None, 16, 16, 128) 512
leaky re_lu_56 (LeakyReLU) (None, 16, 16, 128) 0
conv2d 93 (Conv2D) (None, 8, 8, 256) 295168
batch_normalization_116 (Bat (None, 8, 8, 256) 1024
leaky re lu 57 (LeakyReLU) (None, 8, 8, 256) 0
conv2d 94 (Conv2D) (None, 8, 8, 512) 1180160
batch_normalization 117 (Bat (None, 8, 8, 512) 2048
leaky re lu 58 (LeakyReLU) (None, 8, 8, 512) 0
conv2d_95 (Conv2D) (None, 3, 3, 3) 1539
flatten 31 (Flatten) (None, 27) 0
dense_31 (Dense) (None, 3) 84
activation_31 (Activation) (None, 3) 0

Total params: 1,687,383
Trainable params: 1,685,463
Non—trainable params: 1,920

Listing 38: Feature extraction network for perceptual path length (PPI) computation.
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E Additional Plots for Section 4.4.T
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Figure 63: Latent space colored by different means of MNIST-MAE-generative adversarial net-

work (GAN)
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E.2 dSprites

P

PPRREr T
REEE e emr | N |
(a) Latent space N (¢) Latent space col- (d) Latent space col- (e) Latent space col-
colored by object ored by object ori- ored by object z- ored by object y-
shape entation position position

(b) Latent space col-
ored by object scale

Figure 65: t-distributed stochastic neighbor embedding (E=SNE)-reduced latent space embed-
dings colored by different means of dSprites-VAFHGAN
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Figure 66: Latent space of dSprites-VLAE-GAN colored by different means
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E.3 CelebA
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Figure 67: E=SNE-reduced Latent Space of CelebA-IWVAH, colored by Factors of Variation (present

or not present)
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Figure 68: E=SNE-reduced Latent Space of CelebA-NWAE-GAN colored by Factors of Variation
(present or not present)
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Figure 69: E=SNE-reduced Latent Space of CelebA-MLAE colored by Factors of Variation
(present or not present). Different columns correspond to the different layers.
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Figure 70: E=SNE-reduced Latent Space of CelebA-NLAFAZAN, colored by Factors of Variation
(present or not present). Different columns correspond to the different layers.
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F Additional Plots for Section

Figure 71: Latent spaces traversal between different rotation values for 7,500-MAH on the
dSprites dataset

Figure 72: Latent spaces traversal between different rotation values for 6,250-VAH on the
dSprites dataset
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Figure 73: Latent spaces traversal between different rotation values for 5,000-MAE on the
dsprites dataset

Figure 74: Latent spaces traversal between different rotation values for 3,750-MAE on the
dsprites dataset
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Figure 75: Mean latent space values for MNIST-VLAE-GAN when fixing different factors

variation from Morpho-MNIST
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Figure 76: Mean latent space values for MNIST-VAE when fixing different factors of variation
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Figure 78: Latent space of 10,000-MAH. Different values are either for different xz-positions or for
different y-position. The other position is fixed to 1.0. It is averaged over all other parameters.
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Figure 79: Latent space of 7,500-MAE. Different values are either for different z-positions or for
different y-position. The other position is fixed to 1.0. It is averaged over all other parameters.
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Figure 80: Latent space of 6,250-AH. Different values correspond to different values for the
respective factor of variation. For orientation and scale, the position is fixed to 0.0 in both
directions, shape is fixed to Square. For x-and y-postition, the other position is fixed to 1.0 and
shape is fixed to Square.
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Figure 81: Latent space of 5,000-MAE. Different values correspond to different values for the
respective factor of variation. For orientation and scale, the position is fixed to 0.0 in both
directions, shape is fixed to Square. For x-and y-postition, the other position is fixed to 1.0 and
shape is fixed to Square.
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Figure 82: Latent space of 3,750-MAH. Different values correspond to different values for the
respective factor of variation. For orientation and scale, the position is fixed to 0.0 in both
directions, shape is fixed to Square. For x-and y-postition, the other position is fixed to 1.0 and
shape is fixed to Square.
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Figure 83: Values of different dimensions and layers in the dSprites-WLAE-GAN latent space
for different factor of variation values (first row in each subplot), and position in a principal
component analysis (PCAl)-reduced latent space (second row in each subplot). The left column
corresponds to the first embedding layer, the right one to the third. PCAl was performed
separately for each factor of variation and latent space layer. Different values correspond to
different values for the respective factor of variation. For orientation and scale, the position
is fixed to 0.0 in both directions, shape is fixed to Square. For z-and y-postition, the other
position is fixed to 1.0 and shape is fixed to Square.
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Figure 84: Proportionality of pixel intensities when fixing z; = z3 = ¢ for MNIST-MLAH.

Created accordingly to Figure 3.
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Figure 85: Correlation of pixel intensities when fixing zo

accordingly to Figure EA.
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Figure 86: Correlation of pixel intensities when fixing z; = 2o

Created accordingly to Figure 3.
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Figure 87: Correlation of pixel intensities when fixing z; = z3

Created accordingly to Figure 3.
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Figure 88: Correlation of pixel intensities when fixing zo = z3

Created accordingly to Figure 3.
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H Additional Plots for Section 4.6
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Figure 89: Latent space distribution for different layers and dimensions of MNIST-MAH (blue),
the result of the kernel density estimation (KDE) (green), and a standard normal distribution
(orange).
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Figure 90: Latent space distribution for different layers and dimensions of MNIST-NLAE (blue),
the result of the KDE (green), and a standard normal distribution (orange).
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Figure 91: Latent space distribution for different layers and dimensions of MNIST-NLAF-GAN
(blue), the result of the KDE (green), and a standard normal distribution (orange).

LXV



H.2 dsprites

Figure 92: Latent space distribution for different layers and dimensions of dsprites-NAH (blue),
the result of the KDE (green), and a standard normal distribution (orange).
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Figure 93: Latent space distribution for different layers and dimensions of dsprites-WVAE-GAN
(blue), the result of the KDE (green), and a standard normal distribution (orange).
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Figure 94: Latent space distribution for different layers and dimensions of dsprites-NVI.AH (blue),
the result of the KDE (green), and a standard normal distribution (orange).
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Figure 95: Latent space distribution for different layers and dimensions of dsprites-NVLAF-GAN
(blue), the result of the KDE (green), and a standard normal distribution (orange).
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I Discriminator Network - Section 4.6.1

Layer (type) Output Shape Param #

input_2 (InputLayer) (None, 28, 28, 1) 0
conv2d_4 (Conv2D) (None, 24, 24, 20) 520
leaky re lu 4 (LeakyReLU) (None, 24, 24, 20) 0
batch normalization 23 (Batc (None, 24, 24, 20) 80
conv2d_5 (Conv2D) (None, 22, 22, 20) 3620
leaky re lu 5 (LeakyReLU) (None, 22, 22, 20) 0
batch_normalization_24 (Batc (None, 22, 22, 20) 80
flatten 5 (Flatten) (None, 9680) 0
dense_ 15 (Dense) (None, 100) 968100
leaky re lu 6 (LeakyReLU) (None, 100) 0
batch normalization 25 (Batc (None, 100) 400
dense 16 (Dense) (None, 1) 101

Total params: 972,901
Trainable params: 972,621
Non—trainable params: 280

Listing 39: The discriminator network used to distinguish generated VAE /NVTAH samples from
true MNIST images.
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Acronyms

[AdaINl hdaptive instance normalization
[ATLAFE bdversarial Iatent antoencoded

CNN konvolufional neural nefwork

entral nervous system|

ELBQO Ebudence Jower hound

IGAN [Eenerative adversarial networkl

I [nferior temporal cortex

[Carge Scale Visual Recognition Challenge 2017

LeakyReLU leaky rectified linear unit

LGN  [ateral geniculate nucleus

[KDE  kernel density estimation

KL-divergence [Kullback-Leibler divergence

KT = Kullback-Teibled

MSE  |mnean squared erroi

NLP  hatural Janguage processing

[PCA principal component analysidg

PDE probability density function

PPrL perceptual path Tength

ReLU rectified linear unit

BRDM [epresentational dissimilarity matrix

SVM  Bupport vector machine

TEQ femporo-occipital area

[t-distributed stochastic neighbor embedding
Mariational Aufoencoder

Ladder Variational Autoencoder

primary visual cortex

Becondary visual cortex

E-SNE

VAH

NLAFE Nariational Ladder Aufoencoder
LVATFE

\YAI|

V4

puaternary visual cortex
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