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Abstract

Multilingual text classification is a topic that incorporates the disciplines statistical learning,

natural language processing, as well as statistics. In a first part of this thesis, the applicabil-

ity of automatic text translation algorithms with respect to multilingual sentiment classification

of natural language text is determined. Therefor a German text corpus consisting of product

reviews, is presented and compared with a similar English corpus. Each corpus is translated

into the other language using two di↵erent automatic translation algorithms. Subsequently, two

di↵erent text classification algorithms are applied to the corpora, building di↵erent combinations

of training and validation sets. In a second part, the participation in two subtasks of the Ger-

meval 2017 Task on Aspect Based Sentiment Analysis is described: document relevance (task

A) anddocument-level sentiment classification (task B). The best system proposed in this thesis

achieved the second place of twelve systems submitted by seven teams for task A for both of

the two test sets. For task B, the proposed system achieved the first place for test set 1 and the

second place for test set 2 of 17 systems submitted by eight di↵erent teams. The two parts text

translation and GermEval-2017 participation are discussed in two separate documents, respec-

tively written in journal style, that are concatenated in this document.

Zusammenfassung

Mehrsprachige Textklassifikation ist ein Thema, das die Disziplinen des statistischen Lernens, der

natürlichsprachigen Textverarbeitung sowie der Statistik vereinigt. Diese Thesis untersucht die

Anwendbarkeit von automatischen Textklassifikationsalgorithmen hinsichtlich der mehrsprachi-

gen Stimmungsklassifikation von natürlichsprachigen Texten. Dazu wird ein deutschsprachiger

Textkorpus, bestehend aus Produktbewertungen, vorgestellt und einem ähnlichen, englischsprachi-

gen Korpus gegenüber gestellt. Beide Korpora werden jeweils mit zwei verschiedenen automa-

tischen Übersetzungsalgorithmen in die jeweils andere Sprache übersetzt. Basierend auf diesen

Korpora werden dann zwei verschiedene Klassifikationsalgorithmen auf die Korpora angewandt,

wobei jeweils unterschiedliche Kombinationen aus Trainings- und Validierungsset gebildet wer-

den. Zusätzlich wird die Teilnahme am Germeval 2017 Task on Aspect Based Sentiment Analysis

beschrieben, bei dem an den beiden Subtasks Relevanz der Dokumente (Task A) und Sentiment

Klassifikation auf Dokumenten-Ebene (Task B) teilgenommen wurde. Für Task A hat das beste

System jeweils Platz 2 von zwölf Systemen von sieben unterschiedlichen Teams für beide Test-

Sets erreicht. Von 17 unterschiedlichen Systemen, die von acht Teams entwickelt wurden hat das

beste in dieser Thesis vorgestellte System für Task B den ersten Platz für das erste Test-Set und

den zweiten Platz für das zweite Test-Set erreicht. Die zwei unterschiedlichen Themengebiete

Textübersetzung und GermEval-2017 Teilnahme werden in zwei unterschiedlichen Dokumenten,

jeweils im Journal-Stil geschrieben, erläutert, die in diesem Dokument zusammengefügt wer-

den.
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Erläuterung zur Struktur

Diese Bachelorthesis besteht aus zwei unabhängigen Dokumenten, die jeweils zwei unterschiedlichen

Gestaltungsrichtlinien folgen. Beide Dokumente wurden in diesem Dokument zusammengefügt,

welches dem formalen, äußeren Erscheinungsbild einer Bachelorthesis genügt.

Das erste Dokument, Sentiment Analysis Based on Word Embeddings: Possible Improvements

and Transfer to German Language, bildet den größeren Teil der schriftlichen Arbeit. Es ist

für die spätere Verö↵entlichung in einem IEEE-Journal vorgesehen und folgt deshalb grob der

entsprechenden Gestaltungsvorschrift. Der Abschnitt Share of Common Words des Dokuments

wird nicht Bestandteil der eigentlichen Publikation sein. Er ist deshalb in einem Appendix an

das Dokument angehängt.

Das zweite Dokument, Fasttext and Gradient Boosted Trees at GermEval-2017 Tasks A and B on

Relevance Classification and Document-level Polarity, beschreibt die Teilnahme am GermEval-

2017 Workshop. Es folgt deshalb den entsprechenden Gestaltungsrichtlinien. Dieses Dokument

hat ebenfalls einen Appendix, der nicht Teil der eigentlichen Einreichung war.

II
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Sentiment Analysis Based on Word
Embeddings: Possible Improvements and

Transfer to German Language
Leonard Hövelmann

F

1 INTRODUCTION

RECENTLY, automatic text classification and sentiment
analysis gained attention due to their potential for

industrial applications (e.g. customer relation management).
During the past years, lots of different approaches were
examined ranging over a large variety of machine
learning algorithms and natural language processing (NLP)
applications. However, most of these approaches were
developed for English language. The behavior of many
algorithms applied on German texts is not well researched.
Moreover, text classification algorithms cannot be applied
to German texts whenever an algorithm makes use of
English word lists.

A lot of labeled training data is derived from sources
in English language. It is desirable to make use of the
large amount of annotated training data, even if the
to-be-classified targets use a different language. In those
cases, automatic machine translation could be helpful
to solve the disparity in language between training and
target data. Many recent works have proposed systems
that are able to classifiy text in different languages with
increasing classification performance. They are discussed in
section 2.4. Some of these algorithms, however, have some
disadvantages. Deep learning approaches require a large
training set since they have a very large number of free
parameters. Other approaches are limited to the languages
they have been trained on. If text that originates from
another language shall be classified, a new system has to
be trained. Moreover, only few algorithms are implemented
with a sufficient performance to be used for industrial
purposes. Hence, there are cases in which a monolingual
text classification algorithm is more appropriate. However,
often the performance of a classifier decreases if a translated
corpus is used for training or testing instead of a native
lingual corpus.

This paper discusses techniques to shrink this
performance gap. For this purpose, the fastText classifier
and a multilayer perceptron are exposed to a bilingual
text classification scenario by using two different machine
translation methods. The fastText classifier is based on word
embeddings while the multilayer perceptron is trained on
bag-of-words (BOW) word vectors. Furthermore, a new
German text corpus for sentiment classification is presented

and translated to English language using two different
methods. Similarly, an existing English corpus is translated
to German using two different methods. Based on these
corpora, the classifiers are evaluated with respect to their
intra-lingual classification performance and their ability
to improve the inter-lingual classification performance by
augmenting the training dataset with translated texts.

Section 2 gives an introduction to the subject areas word
embeddings, domain adaptation, sentiment analysis, and
cross-lingual text classification and the respective state-of-
the-art. Section 3 gives an description of the used corpora
and of the experimental setup. Section 4 summarizes the
results of the experiments. The discussion on the results is
given in section 5 and section 6 shows a conclusion of the
results.

2 PREVIOUS WORK

The following section gives a short introduction to the
techniques that are used in the experiments. Moreover, the
state-of-the-art is given for each subject area.

2.1 Word Embeddings
Word embeddings are a technique to create vector represen-
tations for words. In contrast to other techniques like BOW,
they can yield relatively low dimensional word vectors
which is favorable in many cases. Typical dimensions for
embedded word vectors are 100 to 300. Word embeddings
are based on the idea that the probability of a word can be
predicted given its predecessors in a document [1]:

p(wT+1) =

TY

t=1

p(wt|wt�1
1 ) (1)

where wt is the t-th word and wj
i =

(wi, wi+1, . . . , wj�1, wj). However, incorporating all
the previous words for computing the probability of the
next one (see eq. 1) presents a drawback in terms of
computational efficiency. Therefore, most models suppose
that only the last n words are sufficient to accurately
compute the probability of the successive word [1] :

p(wt|wt�1
1 ) ⇡ p(wt|wt�1

t�n+1) (2)
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Fig. 1. The CBOW Model
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Fig. 2. The Skip-gram Model

That idea was generalized in later applications, for
example by predicting the probability of a word given
the previous but additionally also the following words or
by predicting the context of a word given a word. The
words surrounding the current word of interest are often
called context window. Mikolov et al. [2] proposed two
different ways of determining word vector representations:
continous bag of words (CBOW) and the Skip-gram model
which will be explained in the following paragraphs.

The CBOW model (figure 1) predicts a word given its
context. Given a set of words w0, w1, . . . , w|V | in a vo-
cabulary V , the training objective is to maximize the log
probability

1

|V |

|V |X

t=1

X

�cic,i6=0

log p(wt|wt�c, . . . , wt�1, wt+1, . . . , wt+c)

(3)

The Skip-gram model, however, is trained to predict a

context, given the word:

1

|V |

|V |X

t=1

X

�cic,i6=0

log p(wt+i|wt) (4)

Hence, the Skip-gram model yields 2c different distributions
whereas the CBOW model yields only one distribution.

The working principle of word2vec is similar to an
autoencoder. First, input is projected to a lower dimensional
hidden layer. Then, the model is trained to minimize the
discrepancy between the reconstruction of the condensed
input and the training objective that is passed to the loss
function. In contrast to an autoencoder, however, word2vec
does not try to reconstruct the input itself. If the input is
the context of a word, it tries to reconstruct the target word
(CBOW), whereas it tries to reconstruct its context (Skip-
gram) if the input is a single word. In the CBOW setting, the
context words are averaged first and subsequently projected
onto the hidden layer. Due to this procedure, the word order
information is lost, hence the notion bag-of-words in its name.

The different word vectors ~vj are one-hot-encoded
vector representations. Therefore, a word wj (Skip-gram)
or the context of a word (CBOW) can be transferred to
its hidden layer representation by using a weight matrix
W1 2 RK⇥N where N is the dimensionality of the hidden
layer and K = |V |. Also, the hidden layer size is the size
of the word vectors the model produces. Then, the hidden
layer representation is projected into the output layer using
a second weight matrix W2 2 RN⇥K .

The Skip-gram model is trained by maximizing equation
4 where p(wt+i|wt) can be computed using the softmax
function:

p(wt+i|wt) = p(wO|wI) =
ev

0|
wO

vwI

P|V |
w=1 e

v
0|
w vwI

(5)

where v0wi
is the output representation of word wi [3].

The output representation is the vector that is produced
by applying the two matrix multiplications to a one-
hot-encoded input representation. In practice, this way
of computing p(wt+i|wt) is disadvantageous because it
requires to iterate over the whole vocabulary. A hierarchical
version of the softmax, introduced by Morin and Bengio
[4], requires only log2 |V | iterations. The softmax function
guarantees the probability of all words amounting to 1.
This property is often required in cases when the softmax
function is used as an activation function for the last layer
of a neural network. In such cases the normalization is
inevitable and to get to the relative probability of a certain
class is required. The Skip-gram model, however, “is only
concerned with learning high-quality representations” [2].
Hence, Mikolov et al. [2] introduced negative sampling,
which still ensures high-quality vector representations by
using a simplified training objective.
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The negative sampling training objective for a word pair
(wO, wI) is defined as follows [2]:

log �(v
0|
wO

vwI
) +

kX

i=1

Ewi⇠Pn(w)[log �(�v
0|
wi
vwI

)] (6)

where Pn(w) is the noise distribution that generates wrong
samples and � is the logistic function

�(x) =
1

1 + e�x
(7)

This training objective maximizes the probability of
a pair coming from the training data by maximizing the
probability that wrong samples do not come from the
training data.

Word2vec has shown to capture syntactic regularities
that can be represented by vector arithmetic. Global vec-
tors for word embeddings (GloVe) [5] is another word
embedding technique that aims to explicitly capture these
lingual regularities of word2vec. The optimization of GloVe
is driven by the discovery, that the ratio of co-occurrence
probabilities is a better measure for word similarities than
the co-occurrences itself.

2.1.1 fastText
fastText [6] is the name of a text classification system but also
that of a word embedding technique. Its setup is inspired by
the CBOW model [2] and driven by the goal to develop a
fast text classification method since models based on neural
networks “tend to be relatively slow both in train and
test time” [6]. In contrast to the Skip-gram or the CBOW
architecture [3], fastText also takes character-level n-grams
into account. In the fastText model, words are represented
by the sum of their character level n-grams. For example, the
word human is subdivided into the character-level trigrams

<hu, hum, uma, man, an>
and the term “<human>” itself, where < and > are special
characters used by fastText to indicate the beginning or the
ending of a word. The character-level n-grams themselves
are represented by vectors. Hence, the representation of
a whole word can be obtained by the sum of the vector
representations of the character-level n-grams.

When using fastText for classification instead of pre-
diction a word the goal is to predict a class (or label) -
for example positive or negative in the sense of sentiment
polarity. Thus, the output ~yt would be replaced by a class 0
for negative sentiment and 1 for positive sentiment. Sim-
ilar to the CBOW model, fastText works with language-
dependent word embeddings. To represent a document,
word embeddings are averaged which results in a loss of
word order. The model is capable of handling sentences
with a varying number of words. For classification, fastText
also uses bigram features in order to retain information
about the word order. Keeping that information is able to
improve classification performance in sentiment analysis
tasks [7]. The model is trained by minimizing the negative
log-likelihood over classes

� 1

N
·

NX

n=1

yn · log(f(B ·A · xn)) (8)

where xn “is the normalized bag of features of the n-
th document” [6], yn the label, and A and B are weight
matrices. fastText can be trained with different loss func-
tions: softmax, hierarchical softmax, and negative sampling
(default setting1).

2.2 Domain Adaptation
In general, the dataset for training a classifier is derived
from a particular domain equal to the domain of its
target application, for example book reviews. Let X be
the set of training features and Y the set of class labels
where {xi, yi)}Ni=0, xi 2 X , yi 2 Y is an element in
the labeled training data. If all elements (xi, yi) in the
training and the test dataset are randomly derived from
an unknown probability distribution p, there is no reason
to apply domain adaptation. The necessity to apply it
only arises under the following conditions. The observed
probability distribution ps differs significantly from p.
Hence, a classifier trained on training data derived from ps
can only reconstruct ps. When such a classifier is applied to
a new domain with probability distribution pt, pt 6= ps, of
which only the features are known, the classifier will show
bad performance since it tries to reconstruct ps for samples
that are derived from pt.

Blitzer et al. [8] developed structural correspondence
learning (SCL) to perform domain adaptation for part-of-
speech tagging by predicting frequently occurring pivot

features in the target domain. This algorithm was refined for
sentiment analysis problems (SCL-MI) [9]. In essence, the
SCL algorithm shifts pt to ps.
By augmenting the feature space using linear kernels,
Daumé [10] built a classifier that is able to handle domain
adaptation. Just like SCL, it requires labeled features in the
target domain.
Glorot et al. [11] used Stacked Denoising Autoencoders
(SDASH ) to build a classifier that is robust towards noise on
data. They used an autoencoder that is trained to reconstruct
the original signal, given a noisy version of itself [12]. In
a second step, they train a support vector machine (SVM)
on the transformed data. In contrast to SCL, this algorithm
performs no adaptation for a specific domain, but tries to
generalize to arbitrary domains. By perturbing the data, ps
is less biased regarding p.
Bollegala et al. approached domain adaptation for sentiment
analysis using a sentiment sensitive thesaurus [13]. They used
labeled training data to identify elements with a high point-
wise mutual information with the class labels and created
a thesaurus that holds informations about the occurrence of
such elements in a review. In a second step, the augmented
data from an unknown domain with elements from this
thesaurus.
Bi-Transferring Deep Neural Networks (BTDNNs) [14] are
also based on the idea of autoencoders. In contrast to
SDASH , BTDNNs perform an explicit domain adaptation.
They use one encoder to map input to a latent feature rep-
resentation and two decoders to decode this representation
in terms of the source or the target domain. The encoder

1. https://github.com/facebookresearch/fastText, last access:
08/24/2017
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and decoders are trained defining a training objective that
allows reconstructing the source and the target domain
from each other besides the common training objective of
autoencoders.

2.3 Sentiment Analysis
Sentiment analysis algorithms can operate on three levels:
document level, sentence level, and aspect level [15, p. 9].

Aspect level sentiment analysis identifies the sentiment
regarding different aspects occurring in a text. The sentence
“I love riding my beautiful new car across the bumpy road.” for
example expresses two different sentiments regarding two
aspects. In terms of the aspect car, the author expresses a
positive sentiment. Referring to road, however, he expresses
negative sentiment. Aspect level sentiment analysis requires
the identification of the opinion target as well as the opinion
itself. It is particularly useful in cases where various opinion
targets of interest are present within a sentence.

Sentence level sentiment analysis requires a less
fine-grained approach. In general, sentiment analysis on
sentence levels distinguishes three different sentiment
classes: positive, neutral, and negative since not every
sentence expresses any sentiment [15, p. 9]. This step
expects the identification of particular sentences.

Document level sentiment analysis incorporates whole
documents. A popular example for this level is product
reviews. In product reviews, the whole document can be
considered as an expression of sentiment with respect to a
single aspect - the product. Multiple entities in a document
exceed the capability of the document level sentiment anal-
ysis . Often, it is only distinguished between positive and
negative opinions, based on the assumption that reviewers
generally do not express a neutral sentiment about a prod-
uct.

In the remainder of this paper, the term sentiment

analysis refers to document level sentiment analysis since
all following applications work with product reviews.

The usage of recurrent neural networks for natural
language processing was examined by Socher et al. [16].

The field of sentiment analysis is strongly connected
to text classification since sentiment analysis is often un-
derstood as a specialized text classification task. An early
approach to perform sentiment classification with statistical
learning methods was presented by Pang et al. [17]. Using
convolutional neural networks (CNNs), Yoon Kim [18] built
a sentence level sentiment classifier. Kalchbrenner et al.
proposed a similar approach [19]. Text classification using
CNNs that operate on character-level were proposed by
Zhang et al. [20]. Over the past years, Sentiment analysis
on microblogs such as Twitter gained lots of attention [7],
[21], [22], [23], [24]. The influence of different resources on
the classification performance of Tweets was examined by
Dalmia et al. [25]. Recurrent neural networks (RNNs) have
shown to be successful for text classification [26], [27], [28].
Yang et al. [29] proposed a text classification system that

operates with hierarchical recurrent neural networks and
the attention mechanism.

2.4 Cross-Lingual Text Classification
The design of cross-lingual text classifiers aims at good
classification performance in multiple languages. Simple
BOW vectors are inapt for this purpose. Other techniques
should supplant this approach that capture more efficiently
the relations between words. The alignment of words
produced by the CBOW or Skip-gram models [2], is quite
similar for different languages.

Based on this discovery, Mikolov et al. proposed a sys-
tem to find a linear projection between vector spaces of
different languages using a bilingual dictionary [30]. They
assume that it is possible to transform the vector space of
a model trained in one language into the vector space of
another language with a linear projection. The linear pro-
jection is performed by a translation matrix, whose weights
are determined by utilizing the bilingual dictionary:

min
w

nX

i=1

||Wxi � zi||2 (9)

where xi is the word embedding representation of word
i in the source language and zi is the word embedding
representation of word i in the target language.

The objective function for learning the word embeddings
is based on maximum likelihood, while the distance
function is the cosine distance and the loss function
to determine the linear projection is the mean squared
error [30]. This irregularity led Xing et al. [?] to the
development of normalized word embeddings and a
different computation of the projection matrix.

Instead of transforming the vector space representation
of the source language into the vector space representation
of the target language, Lauly et al. [31] pursued another
approach. They trained autoencoders to directly transform
the BOW representation of one sentence in the source
language into the BOW representation in the target
language. To increase computational efficiency, they used a
hierarchical word representation. For encoding, the regular
BOW representation is chosen. No training is performed
during this step - the term frequency - inverse document
frequency (TF-IDF) [32] BOW representation of a word
builds the hidden layer. Since the vocabulary size can differ
between two languages, they are adjusted such that the
hidden layers always have the same size. For decoding,
two decoders are trained - one to decode into language X
and the other to decode into language Y . For training the
decoders, the Europarl corpus [33] was used.

Using SCL, Prettenhofer et al. developed cross-language
classification using structural correspondence learning (CL-
SCL), an extension that performs multilingual sentiment
classification [34]. For this purpose, they search for words
that contain high class information with positive sentiment
and frequent occurrance. Having these potential high-
quality class predictors, they identify pivot features by
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TABLE 1
Number of Reviews in the Different Domains (German Corpus)

Domain # Reviews Polarities

# pos # neutral # neg

G 2221 1146 114 961
D&B 1663 887 81 695
C&P 357 239 26 91
PN 732 567 56 108
K&H 1712 962 111 639
SP 641 447 27 167
T&HI 1966 1299 114 553
B 3384 2599 274 499

building word pairs of a word from the source domain and
its translation in the target domain.

The viability of using machine translation to transfer a
corpus from one language into another was examined by
Banea et al. [35] by comparing different classifiers on dif-
ferent language resources. Using English sentiment words
and their Chinese translations, Zhou et al. [36] created
bilingual sentiment word embeddings by using denoising
autoencoders. A similar approach was pursued by Zhou et
al. [14], who created bilingual word embeddings, though not
exclusively for sentiment words. Also by using a translated
corpus, Zhou et al. [37] jointly trained two bidirectional
LSTMs using the attention mechanism. Using character-
level embeddings and convolutions, Wehrmann et al. [38]
built a multi-lingual text classifier with low memory con-
sumption that requires no aligned or translated data.

3 EXPERIMENTAL SETUP

With the goal to examine the influence of using translated
language for a text classifier instead of native language,
different experiments were set up.

First, the influence of automatic text translations
regarding the quality of text classifiers is examined.
Therefor, a German and an English text corpus containing
labeled product reviews, were translated. Each corpus was
translated to the other language using an open source
translation program and a commercial translation API,
whereas due to technical reasons two different commercial
APIs were used.

Second, the possibility of enhancing a classifier by using
translated texts for training in addition to native lingual
texts was investigated. For this purpose, classifiers were
trained on a merged dataset built from native lingual and
translated reviews. The performance of these classifiers is
compared to classifiers that were trained exclusively on
native lingual reviews.

3.1 Corpora
At least four different corpora are required to perform the
previously-described experiments: (1) a German corpus, (2)
the translation of a German corpus, (3) an English corpus,
and (4) the translation of an English corpus. In order to
compare different translation algorithms, six corpora were

TABLE 2
Number of Reviews in the Different Domains (English Corpus)

Domain # Reviews Polarities

# pos # neutral # neg

P,L&G 12550 1119 1555 9876
M&T 87559 7949 7802 71808
PN 95208 10951 9345 74912
K&H 96278 9402 6945 79931
T&HI 95795 7278 7418 81099
B 94097 9036 9782 71679

TABLE 3
Domain Statistics for Review Lengths (German Corpus, in Characters)

Domain mean median � min max

G 448.4 859 584.9 21 14448
D&B 674.5 223 1009.5 86 11983
C&P 2049.6 1801 2475.9 73 22097
PN 547.5 595 622.0 68 7937
K&H 634.6 374 813.8 42 9091
SP 326.9 136 274.6 18 2299
T&HI 564.0 342 746.0 50 10084
B 597.5 209 775.6 15 9604

TABLE 4
Domain Statistics for Review Lengths (English Corpus, in Characters)

Domain mean median � min max

P,L&G 829.8 590 807.5 1 12995
M&T 893.4 489 1110.1 1 23095
PN 441.0 288 489.9 1 15621
K&H 499.9 317 569.5 1 30802
T&HI 536.0 324 645.6 1 19242
B 834.5 469 1011.1 1 30444

TABLE 5
Domain Statistics for Review Lengths (German Corpus, in Words)

Domain mean median � min max

G 68.9 128 109 4 3374
D&B 104.9 36 154.7 19 1998
C&P 313.1 293 371.2 22 3283
PN 84.1 93 94 21 1213
K&H 97.4 57 122.4 9 1411
SP 51.8 22 42.8 5 382
T&HI 85.9 57 112.5 17 1468
B 91.6 32 118.6 4 1510

TABLE 6
Domain Statistics for Review Lengths (English Corpus, in Words)

Domain mean median � min max

P,L&G 156.9 113 150.0 1 2345
M&T 159.3 90 193.24 1 3874
PN 85.8 57 92.7 1 3034
K&H 95.1 61 105.7 1 4995
T&HI 101.3 62 119.4 1 3548
B 148.8 86 174.8 1 4978

created in total with the two additional corpora originating
from a different translation algorithm. The translations are
described in subsection 3.4.
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TABLE 7
Domain Statistics for Review Lengths (German Corpus, in Sentences)

Domain mean median � min max

G 4.9 4 5.3 1 122
D&B 6.3 4 8.3 1 116
C&P 18.5 11 21.4 1 198
PN 5.2 4 5.3 1 60
K&H 6.6 4 7.5 1 76
SP 4.0 3 3.0 1 26
T&HI 6.0 4 7.1 1 87
B 5.7 4 6.8 1 84

TABLE 8
Domain Statistics for Review Lengths (English Corpus, in Sentences)

Domain mean median � min max

P,L&G 7.4 6 6.4 1 107
M&T 7.2 5 7.7 1 163
PN 4.7 4 4.6 1 721
K&H 5.2 4 4.6 1 209
T&HI 5.4 4 5.2 1 122
B 6.8 5 6.8 1 194

TABLE 9
Vocabulary Statistics (German Corpus)

Domain Unigrams Bigrams Trigrams

G 16563 87428 135,581
D&B 20584 101,900 157,372
C&P 13166 68673 106,187
PN 9056 40544 57530
K&H 16942 94938 150,297
SP 5883 25203 35248
T&HI 17842 97962 152,795
B 28495 161,253 268,340

TABLE 10
Vocabulary Statistics (English Corpus)

Domain Unigrams Bigrams Trigrams

P,L&G 60,013 501,971 1,230,839
M&T 34,0961 2,989,613 7,777,735
PN 135,427 1,270,427 3,830,130
K&H 162,848 1,456,418 4,329,004
T&HI 188,775 1,657,037 4,821,108
B 299,497 2,750,034 7,323,181

The German corpus consists of amazon product reviews
that have been selected in a time period lasting from
11/18/2016 to 02/20/2017. The reviews were taken from
the following eight product categories: “Garden” (G),
“Camera and Photo” (C&P), “Pet Nutrition” (PN), “Tools
and Home Improvement” (T&HI), “Sports Products”
(SP), “Kitchen and Household (K&H)”, “Books” (B), and
”DVDs and Blu-Rays” (D&B). The product categories were
customarily selected on the basis of the category overview
of the German amazon website2 on that time. Due to legal
issues, the original reviews cannot be published. However,
a list of the product and review IDs as well as a tool to

2. https://www.amazon.de/gp/site-directory/ref=nav shopall btn,
last access: 06/21/2017

TABLE 11
Mapping of Domain Labels Between English and German Corpus

Domain Label in English Corpus Domain Label in German Corpus

Books Books
Kitchen Kitchen & Household

Movies & TV DVDs & Blu-Rays
Patio, Lawn & Garden Garden

Pet Supplies Pet Nutrition
Tools & Home Improvement Tools & Home Improvement

download the original reviews is provided3.

In addition to the German review corpus, English
amazon product reviews have been used from an existing
corpus4 [39]. From this corpus, reviews from domains
similar to the ones in the native lingual corpus were
selected (see Table 11). Based on these domains, random
samples were translated. The mapping between the
domains is shown in Table 11.

Tables 3 to 10 give detailed statistics of the two corpora.
Reviews with five or four stars are considered as positive
(“pos”), reviews with three stars as neutral, and reviews
with one or two stars are considered as negative (“neg”).
Neutral reviews were omitted, only positive and negative
reviews were used for the following experiments. Table 3
provides information about the review length in characters.
Table 9 shows the number of disjoint words in each domain.

3.2 Text Preprocessing

Among two commercial translation APIs, the Moses trans-
lator was used to translate the reviews (see subsection
3.4). The Moses translator itself is not able to distinguish
different sentences, therefore the texts have to be split into
single sentences and fed into the translator individually.
Hence, the reviews had to be preprocessed before being
translated with Moses. First, the text was transformed to
lower case. Since the translation is used for classification
only, and lower-casing is a preprocessing step for any used
classifier, the casing tool of Moses remains unused. The
punctuation marks “.”, “!”, and “?” were replaced with a
line break. Other punctuation marks (;,()[]$- —%§*+-# /)
were removed. English abbrevations like “I’m” should be
forwarded in their long form to the translator, therefore the
following replacements were performed: “’s” was replaced
with ”is”, “i’m” was replaced with ”i am”, ”n’t” was re-
placed with ”not”, “’ll” was replaced with ”will”, and “’ve”
was replaced with “have”.
For classification, the text is preprocessed by transforming to
lower-case and stemming the text using the German variant
of the Snowball stemmer5.

3. https://github.com/LeoIV/ReviewCrawler, last access:
08/29/2017, license: MIT

4. http://jmcauley.ucsd.edu/data/amazon/, last access: 06/29/2017
5. http://snowballstem.org/, last access: 06/21/2017, license: 3-

clause BSD
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3.3 Classifier
Two different classifiers were used: a feedforward multi-
layer perceptron (MLP) and fastText. The feedforward MLP
has one hidden layer. The output layer is trained using the
softmax function while the hidden layer uses the sigmoid
function. The number of output units varies depending on
the number of classes. The network can be described as

~y = �(~wT
2 · sig(~wT

1 · ~x+ b1) + b2) (10)

with
�(~x)i =

exi

PK
k=1 e

xk

, i = 1, . . . ,K (11)

sigj(t) =
1

1 + e�tj
(12)

where K is the number of classes and sigj(t) is the value
for the j-th hidden unit.

Additionally, fastText [6] is used as a word-embedding-
based algorithm.

3.4 Translation
Three different algorithms were used for translation.
Moses [40] is an open source toolkit for statistical machine
translation6 (SMT), which is based on phrase-based
statistical machine translation.

In phrase-based SMT, instead of aligning words, an
algorithm searches for matches of phrases in the source
and the target language. (f̄ , ē) is a phrase pair, where ē
consists of the words e0, . . . , ei and f̄ consists of the words
f0, . . . , fj . The phrase-based SMT model consists of three
stages: a phrase translation table, a reordering model, and
a language model [41, p. 136] where the phrase translation
table holds scores

�(f̄ |ē) = count(ē, f̄)
P

f̄i
count(ē, f̄i

(13)

for a certain combination of phrases, the reordering model
d(x) = ↵|x|, ↵ 2 [0, 1] computes the costs for a reordering
of phrases, and the language model pLM(e) ensures “fluent”
language. The costs of the reordering model d are based on
the movement that have to move a phrase in a particular sen-
tence [41, p. 130]. The language model is defined as shown
in equation 1 with w0, . . . , wT+1 = e0, . . . , ei. Using these
definitions, the phrase-based SMT model can be defined [41,
p. 136] as

ebest = argmax
e

IX

i=1

[�(f̄i|ēi)d(starti � endi�1 � 1)]pLM(ē)

(14)

where ebest is the best translation according to the model,
I is the number of phrases in the model, and starti is “the
position of the first word of the foreign input phrase that
translates to the i-th English phrase, and endi is the position
of the last word of that foreign phrase” [41, p. 129].

6. http://www.statmt.org/moses/, last access: 07/21/2017, license:
LGPL

Moses comes with various pre-trained models, trained
on the Europarl corpus7 [33]. Both the German-English
as well as the English-German model were used for
translation. Typical translations generated by Moses are:

“bitterly at the beginning , i thought that there was a

fine levers , and i have also very reingesteigert therefore

, it is rather i am told marks a musiklehrer because ,

at some point , the point we here in this matter stuck

we can implement it properly in this way , there are

thousands of hefte over the nix”

in case of German to English translation, or

“dies ist ein liebenswürdiger version der klassis-

chen dicken ist märchen henry winkler ist eine gute

aufzuzeigen , wie die ”scrooge” charakter obwohl sie

wissen , was passieren wird , diese fassung hat genug

von einer änderung , um sie besser zu machen , dass die

durchschnittliche wenn sie die liebe ein weihnachtslied

in jedem version , dann werden sie lieben das”

in case of English to German translation. The text is hardly
understandable to a human reader. Many words cannot be
aligned and therefore remain in their original language.

For English to German translation, the Google Cloud
Translation API8 was applied to a subset of the English
dataset. According to the Google Blog9, the German
to English translations are based on neural machine
translation (NMT) [42], [43]. Googles NMT algorithm
uses recurrent neural networks (RNNs) to perform the
translation. The basic idea is based on the Encoder-Decoder
architecture, which is an extension of RNNs that enables
them to handle input sequences whose length differs from
the length of the output sequence [44], [45]. The Encoder-
Decoder architecture is enhanced by the attention mechanism

[46] that learns to associate the output of the encoder to
the elements of the output of the decoder. Wu et al. used
eight stacked long short-term memory (LSTM) [47] layers
for encoding as well as for decoding, whereas the first layer
of the decoder is a bidirectional LSTM layer.

For German to English translation, the Yandex
Translation API was used10. Just like Moses, the Yandex
Translation API is phrase-based11.
A typical translation generated by the Yandex Translation
API is:

7. http://www.statmt.org/moses/RELEASE-3.0/models/, last ac-
cess: 07/31/2017

8. https://cloud.google.com/translate/, last access: 07/31/2017, li-
cense: commercial with a free tier

9. https://www.blog.google/products/translate/found-translation-
more-accurate-fluent-sentences-google-translate, last access:
08/23/2017

10. https://tech.yandex.com/translate/, last access: 07/31/2017, li-
cense: commercial with a free tier

11. https://yandex.com/company/technologies/translation/, last
access: 08/23/2017
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“Super Book!!!! I finally strapped the notes. The book

is clearly written and very logically, so that you will be

really guided step-by-step approach the subject. Abso-

lute recommendation for all beginners, the notes want

to learn to read!”

and a typcial Google Cloud API translation is:

“Perfekt für kleine Hunde und Käfige! Wir haben einen

kleinen Chihuahua unter 5 lbs. Zwei dieser Schalen

passen perfekt in ihrem Käfig mit ihr, und ich habe

keinerlei Beschwerden mit diesen Schalen hatten. Sie

reinigen sich gut und haben keine Anzeichen von Rost

oder erhebliche Mängel gezeigt. Ich würde diese sofort

wieder mit Null zu zögern kaufen. Absolut perfekt!!!”

These reviews are easier to read and no words remain
untranslated.

In the following, the different translation algorithms are
compared in terms of their suitability for sentiment classi-
fication. In case of English to German translation, Moses is
compared to the Google Cloud Translation API while in case
of German to English translation, Moses is compared to the
Yandex translation API.

3.5 Influence of Translations
In this setup, the influence of using translations instead
of native lingual reviews is examined. For this reason, the
following system runs were executed.

First, the two different classifiers as explained above
are trained and tested on native lingual reviews in both
German and English language.
Second, the classifiers are trained on the native lingual
reviews, and tested on the translated reviews. This is
done for both directions: German to English and English
to German as well as for the two different translations
algorithms explained above using the two different
classifiers.
Third, the two classifiers are trained and validated only on
the translated algorithms.

To perform these experiments, six different datasets are
required: (1) the native lingual German reviews, (2) the
native lingual English reviews, (3) the German to English
translated reviews using Moses, (4) the German-to-English
translated reviews using the Yandex Translation API, (5) the
English-to-German translated reviews using Moses, and (6)
the English to German translated reviews using the Google
Cloud Translation API.

Since these datasets originate from different sources,
they vary with respect to the number of reviews they
contain. To achieve comparability, they are size-adjusted.
For all experiments explained in this subsection, the
number of reviews in each dataset is shrunken to the
smallest number of reviews in any dataset.

The experiments are validated using 10-fold cross-
validation. In cases where the training dataset differs from
the validation dataset, both are split into ten subsets. For
each run, 90% of the training data is used for training,
omitting 10% for the data where the 10%-split differs from
run to run. 10% of the validation data is used for validation,
using varying splits from run to run.

3.6 Augmenting Datasets
The following experiments are intended to clarify in
which way a classifier, performing in one language, can
be enhanced by augmenting a training set with additional
reviews translated from another language. For example,
it should be examined whether it is possible to enhance a
binary text classifier, that performs in the English language,
by augmenting its training set with reviews that were
translated from German to English using Moses.

In this scenario, the following experiments are
distinguished. The first two experiments follow this
procedure: first, training a classifier on native lingual
German reviews plus English to German translated reviews
for both Moses and Google Cloud Translation API. Second,
validating on native German reviews. Accordingly, the
other two experiments train a classifier on native lingual
English reviews plus German to English translated reviews
for both, Moses and Yandex translation API and validate
them on native lingual English reviews. The size of the
datasets used for augmentation is set to the minimum of
the respective translation. For example, when translated
English reviews are used for augmentation and the length
of the Moses translation corpus is less than the length of
the Yandex translation corpus, a random sample with the
length of the Moses corpus is taken from the Yandex corpus.

3.7 System Description
The experiments were run on Spark using Scala for the
implementation. For running fastText, the Scala process
package was used that can run external processes and
handle their input and output.

The experiments have been executed on a Unix Machine
with four Intel Xeon E5-2687W v3 CPUs. In total, the ma-
chine has 20 physical CPU cores and 256GB RAM. Of these
20 physical cores, at most, 12 were used since the machine
is used by others as well.

4 RESULTS

This section gives the results of the previously-described
translation experiments. The scores are expressed in terms of
the micro averaged F1 scores of the different classifications
or further computations on these scores.

4.1 Influence of Translations: Results
Tables 12 and 13 show the results of the experiments. For
both German and English, and for all combinations (native
to native, native to translated, translated to native, and
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TABLE 12
Micro-Averaged F1 Results of English as the Native Language

Training Testing fastText MLP

native native 0.896(±0.008) 0.879(±0.009)

Moses

fastText MLP

translated native 0.848(±0.008) 0.804(±0.014)
native translated 0.795(±0.010) 0.721(±0.017)
translated translated 0.902(±0.007) 0.879(±0.010)

Yandex Translation API

fastText MLP

translated native 0.853(±0.008) 0.809(±0.011)
native translated 0.801(±0.018) 0.735(±0.013)
translated translated 0.909(±0.007) 0.886(±0.008)

TABLE 13
Micro-Averaged F1 Results of German as the Native Language

Training Testing fastText MLP

native native 0.917(±0.008) 0.891(±0.010)

Moses

fastText MLP

translated native 0.794(±0.013) 0.688(±0.018)
native translated 0.814(±0.009) 0.782(±0.021)
translated translated 0.833(±0.011) 0.799(±0.015)

Google Cloud Translation API

fastText MLP

translated native 0.881(±0.011) 0.799(±0.015)
native translated 0.822(±0.008) 0.764(±0.014)
translated translated 0.880(±0.009) 0.838(±0.011)

TABLE 14
Transfer Error for English: the transfer error is the discrepancy between
the micro-averaged F1 scores of the classifier trained on native lingual

reviews and the classifier in the respective row. The significance is
determined by a two-sided paired Wilcoxon-Mann-Whitney test for

these two distributions with n = 10

Moses

Training Testing fastText MLP Sig.

translated native 0.048(±0.005) 0.074(±0.017) ***
native translated 0.101(±0.009) 0.158(±0.021) ***

Yandex Translation API

Training Testing fastText MLP Sig.

translated native 0.043(±0.010) 0.070(±0.017) ***
native translated 0.095(±0.018) 0.144(±0.017) ***

translated to translated), and for each classifier, (MLP and
fastText), the results are listed. Table 12 shows the results
of the experiments with English as the source language.
Similarly, Table 13 shows the results with German as the
source language. For example, the value translated in the
column Training of Table 13 indicates that the model was
trained on reviews translated from English to German.
Accordingly, native in the column Testing means that the
model was trained on native lingual reviews.

TABLE 15
Transfer Error for German: the transfer error is the discrepancy

between the micro-averaged F1 scores of the classifier trained on
native lingual reviews and the classifier in the respective row. The

significance is determined by a two-sided paired
Wilcoxon-Mann-Whitney test for these two distributions with n = 10

Moses

Training Testing fastText MLP Sig.

translated native 0.122(±0.013) 0.203(±0.019) ***
native translated 0.084(±0.013) 0.092(±0.017) ns

Google Cloud Translation API

Training Testing fastText MLP Sig.

translated native 0.036(±0.006) 0.091(±0.013) ***
native translated 0.095(±0.012) 0.127(±0.012) ***

TABLE 16
Augmenting English Reviews: Results (Micro-Averaged F1 Score)

fastText MLP

Moses 0.896(±0.011) 0.884(±0.013)
Yandex Translation API 0.899(±0.009) 0.885(±0.009)

TABLE 17
Augmenting German Reviews: Results (Micro-Averaged F1 Score)

fastText MLP

Moses 0.899(±0.011) 0.868(±0.008)
Google Cloud Translation API 0.908(±0.011) 0.885(±0.010)

The transfer error resulting from using translated re-
views instead of native lingual ones for either training or
validation, is shown in Tables 14 and 15. The significance of
the discrepancy between the distribution of fastText and the
distribution of the MLP is given in the column“ Sig.” where
“ns” means no significance (p > 0.05), * means p  0.05, **
means p  0.01, and *** means p  0.001. The significance
is determined using a two-sided paired Wilcoxon-Mann-
Whitney test [48].

4.2 Augmenting Datasets: Results
Tables 16 and 17 show the results of the experiments of the
dataset augmentation, for both source languages: German
and English as well as for the two classification algorithms
and the different translation algorithms.

5 DISCUSSION

In the following, the results of the experiments described in
the preceding sections will be discussed.

5.1 Influence of Translations
The best classification results are achieved in cases where
a classifier is applied to a dataset, that originates from the
same probability distribution as the dataset the classifier
was trained on. This holds true for both, the native lingual
data sets as well as for the translated datasets. A fastText
classifier that was trained on native lingual German reviews
with fastText achieves a micro averaged F1 score of 0.917



10

TABLE 18
Difference Between Moses and the Respective Commercial API for

Particular Experiments

train: transl., test: native train: native, test: transl.

German, fastText 0.087 0.008
German, MLP 0.111 �0.018
English, fastText 0.005 0.005
English, MLP 0.006 0.007

with a standard deviation of 0.008. The same classifier,
applied to a translated version of the dataset achieves a
score of 0.909(±0.007) in case of the Yandex Translation
API and it achieves a score of 0.902(±0.007) in case of the
Moses statistical classifier.
In case of English being the native language, the micro-
averaged F1 scores of the classifiers performing on Moses
translations are respectively 0.007 points below the scores
of the Yandex translations. In case of German being the
native language, this discrepancy is higher. The scores of
the classifiers performing on the Moses reviews are each
more than 0.039 below the scores of the other classifiers.
There are multiple possible explanations for this result.
First, the Yandex translations could be worse than the
Google translations in terms of classification performance.
Therefore, the results of the classifier performing on the
Yandex reviews are closer to the (always worse) results of
the classifier performing on Moses translations. Based on
the fact, that the Google translator works with a different
technology (NMT) compared to the Yandex and the Moses
translator (SMT), this is not unlikely.
Second, the reason for the deviating discrepancy could lie in
the Moses translations. The results of the classifiers working
on native English reviews are worse than the results of the
classifiers working on native German reviews12. Hence, it
is not straightforward that the classification on Google or
Yandex translations would achieve the same score as they
did in the other language. The Yandex translations could be
on par with the Google translations even though they differ
in another language. If this is the case, the discrepancy
could result from Moses performing worse on English to
German than on German to English translations.
To verify which of these assumptions hold true, the Yandex
and the Google translator would each have to be applied to
both languages.

The translations of the Moses translator seem to be
poor to a human reader, however, they provide reasonable
results compared to commercial translation APIs, in
particular, the Yandex Translation API and the Google
Cloud Translation API. However, there are qualitative
differences. In cases where a classifier is trained on native
lingual reviews and applied to translated reviews, the
discrepancy between Moses and the commercial APIs (see
Table 18) is relatively small. In case of German, where
Google was the commercial API, the difference between (1)
training on translated reviews and testing on native, and (2)
training on native and testing on translated is very large. In
case of Yandex being the commercial API, there is almost

12. In case of fastText they are significantly (*) worse.

English—Moses—MLP

English—Moses—fastText

English—Yandex—MLP

English—Yandex—fastText

German—Moses—MLP

German—Moses—fastText

German—Google—MLP

German—Google—fastText

0.884

0.896

0.885

0.899

0.868

0.899

0.885

0.908

0.879

0.896

0.879

0.896

0.891

0.917

0.891

0.917

Augmented
Not Augmented

Fig. 3. Results of the Data Augmentation

no difference. Again, this could have the same reasons as
described in the previous paragraph.

Using translated reviews for training and native lingual
reviews for testing or using native lingual reviews for
training and translated reviews for testing results in a
drop of classification performance compared to sample
training and validation set from the same distribution. In
all cases, this transfer error is higher for the MLP classifier
compared to the fastText classifier. In 7 out of 8 cases,
the discrepancy between these two distributions is highly
significant. Thus, the fastText classifier, in general, is less
prone to errors resulting from using translated texts instead
of native lingual texts than the multilayer perceptron using
BOW features. Based on this discovery, the question is
whether word embeddings in general are more stable in
terms of the translation loss than BOW representations. To
verify or falsify this assumption, the described experiments
would have to be performed on a larger scale. Different
word embedding techniques would have to be compared
to different BOW representations, respectively working
with different classifiers. Moreover, fastText incorporates
character-level n-grams as well as word level n-grams.
Further research should examine whether the superiority of
fastText is based on these characteristics or whether word
embedding techniques in general, including word2vec, are
better than BOW based approaches.

5.2 Augmenting Datasets

The results of the classifiers, whose training set was aug-
mented with the translated corpus are shown in Tables 16
and 17. The results are compared with the results of the
classifiers trained only on the native lingual reviews in
Figure 3. There is no evidence, that augmenting a classifier
with translated data helps improving its micro-averaged
F1 score. Instead, in cases where a German classifier is
augmented with translated Moses reviews, the classification
performance drops significantly (p < 0.05). In all other
cases, there is no significant difference between the results
of the classifier trained with the augmented dataset and the
results of the classifier only trained on the native lingual
reviews.
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6 CONCLUSION

The previous experiments have shown the advantages
of using fastText instead of a multilayer perceptron for
translation-based multilingual text classification. However,
since these results are based on only two algorithms, it is
not possible to conclude that word embeddings in general
are more stable regarding translation loss. For making
more general assumptions, additional word-embedding
approaches should be compared to other BOW approaches.

The experiments have also shown that classifiers
trained on Moses-translated reviews perform worse than
classifiers trained on Yandex- or Google-translated reviews.
Even though, the discrepancy between the Moses-Yandex
translations is less than between the Moses-Google
translations, no superiority of one algorithm (Google or
Yandex) over the other concludes.

The experiments on data augmentation brought no
proof, that a text classifier can be enhanced by using more
training data, that was translated from other languages.
However, there is no implication that a text classifier cannot

be enhanced by using for example a larger corpus consisting
of such data.
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APPENDIX A
SHARE OF COMMON WORDS

As introduced in section 1, domain adaptation systems try
to alter a classifier that was trained in the source domain in
a way, that this classifier shows better performance in the
source domain than it did before the domain adaptation.
In the case of text classification tasks, two domains share
a certain amount of words while other words only occur
in specific domains. Previous experiments indicate that a
larger amount of common words yields a smaller drop of
classification performance.
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Fig. 4. Amount of Common Words and Average MCC: the regression
line is computed using quantile regression with ⌧ = 0.5

Figure 4 shows the average Matthews Correlation
Coefficient (MCC) of a model trained in a source domain
and applied to a (different) target domain and the according
share of common words. As figure 4 suggests, there is a
weak correlation of 0.462 between these two variables. If
a larger share of common words yields a smaller drop
in classification performance, it would be worthwhile to
increase this share.
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Fig. 6. Difference between the Classification with unknown word re-
placement and without unknown word replacement. The differences
almost sum up to 0.

The algorithm presented in Figure 5 shows one assumed
possible way to increase this share. It replaces words in
the target domain, that did not occur in the source domain
with words from the source domain, that are similar to the
original words. The idea is, that two deviating domains
use slightly different terms that have a similar meaning. If
a word in the target domain did not occur in the source
domain, a classifier was not able to consider them as a
feature. The similarity of two terms can be computed
using word embeddings and the cosine distance. If the
source and the target vocabulary are considered as fixed,
the only hyperparameter is the threshold ✏. However, this
hyperparameter is hard to determine.

Figure 6 shows the results of the algorithm (✏ = 5.0) in
comparison to a classifier that left out this preprocessing
step. Although some values differ to a great degree, the
mean difference sums up to approximately zero.

A two-sided paired Wilcoxon-Mann-Whitney-Test [48]
yields a p-value of 0.918. Hence, the result is not significant.



Fasttext and Gradient Boosted Trees at GermEval-2017 Tasks A and B on
Relevance Classification and Document-level Polarity

Abstract

This paper describes the submissions to the
Shared Task on Aspect-based Sentiment in

Social Media Customer Feedback for the
GermEval 2017-workshop for the two sub-
tasks Relevance Classification (task A) and
Document-level Polarity (task B). For each
subtask, the results of the same three sys-
tems were submitted: a fastText classifier,
enhanced with pretrained vectors, gradient
boosted trees (GBTs) trained on bag-of-
words (BOWs), and an ensemble of GBTs,
respectively trained on word embeddings
and on BOWs. For the subtask “Relevance
Classification”, the best system yields a
micro-averaged F1 score of 0.895 on the
dev set and 0.907 using 5-fold cross val-
idation on the train and the dev set. For
the subtask “Document-level Polarity”, the
best system achieves 0.782 on the test set
and 0.775 using 5-fold cross validation on
the train and the dev set. The proposed sys-
tem achieved the second place of twelve
systems submitted by seven teams for task
A for both test sets. For task B, the pro-
posed system achieved the first place for
test set one and the second place for test set
two of 17 systems submitted by 8 different
teams.

1 Introduction

For companies, customer feedback in social net-
works is a valuable resource for improving the own
service. Often, customers propose improvements
and show points of criticism companies were un-
aware of. Moreover, it is important to get an im-
pression of the opinions customers hold with re-
gard to the own company. Manually separating
the relevant feedback from the irrelevant, however,
needs many human resource and is therefore expen-
sive. The GermEval 2017 Shared Task on Aspect-

based Sentiment in Social Media Customer Feed-

back workshop (Wojatzki et al., 2017) addresses
the automatic processing of German-language cus-
tomer feedback regarding its different character-
istics. Therefor, four different subtasks were de-
fined: binary classification of whether a feedback

is relevant to a given instance (e.g. a company)
(task A), categorization of the feedback into senti-
ment classes (positive, neutral, and negative) (task
B), binary classification of a specific aspect into
sentiment classes (positive and negative) (task C),
and opinion target extraction (task D). In order to
elaborate the different subtasks, a training set of
customer feedbacks regarding the German railroad
company “Deutsche Bahn” was provided. Together
with every feedback text, class labels for each sub-
task were given. The goal was to develop a clas-
sifier with a high micro-averaged F1 score on the
prediction of those class labels.
Word embeddings trained with the objective to pre-
dict sentiment polarity were successfully applied at
SemEval 2014 workshop (Tang et al., 2014a; Tang
et al., 2014b). Ensembles of convolutional neural
networks (CNNs) and long short-term memories
(LSTMs), trained on pre-trained word embeddings
achieved state-of-the-art performance at SemEval
2017 workshop (Cliche, 2017). Zhang et al. pre-
sented character-level CNNs, trained on one-hot
encoded character vectors for text classification
tasks (Zhang et al., 2015). GBTs (Friedman, 2001)
have shown good results in a variety of classifica-
tions tasks. 17 out of 29 systems that have been
published on Kaggle’s blog during 2015 used XG-
Boost, a framework that implements GBTs (Chen
and Guestrin, 2016).
The following sections describe the work on two
out of the four given subtasks (“Relevance Classifi-
cation” and “Document-level Polarity”).

2 Dataset

The dataset for the classification task consists of
customer feedback texts collected from various so-
cial media platforms, the hyperlink to the resource
of each text, and the annotations of class labels
per subtask. The class labels contained informa-
tion about the respective document-level sentiment
polarity (positive, neutral, or negative), the binary
relevance label (denoting whether the text contains
feedback about the “Deutsche Bahn”), as well as
annotations for other subtasks which will not be
considered in this paper. The data set was split into
a training set (train) and a training test set (dev).
Additionally, a test set (test) without class labels



was provided at a later stage.

Dataset # Reviews Relevance

# true # false

train 19449 16217 1937
dev 2375 3232 438
test 4408 -

Table 1: Number of Reviews in the Data Sets and
their Respective Relevance Classes

Dataset # Reviews Document-level Polarity

# positive # neutral # negative

train 19449 1179 13222 5048
dev 2375 149 1637 589
test 4408 -

Table 2: Number of Reviews in the Different
Document-level Polarity Classes

The distribution of the feedbacks over the dif-
ferent classes are shown in Tables 1 and 2. The
classes are not equally distributed, neither in the
case of relevance classification nor in the case of
document-level sentiment polarity classification.
The average lengths in the different relevance and
document-level polarity classes are shown in Ta-
bles 3 and 4.

3 Text Preprocessing

Out of the whole dataset, only the review texts
were used as a feature. The hyperlinks provided
in the dataset were not considered. Each review
text was tokenized to extract single terms using
whitespaces, percents signs, forward slashes, and
plus signs as delimiters.
A large amount of the data originates from
Tweets. Therefore, special attention was paid
to Twitter-specific text preprocessing. Fre-
quently occurring Twitter usernames related
to the “Deutsche Bahn” like “@DB Bahn”,
“@Bahnansagen”, or “@DB Info” are pooled by
replacing them with “hhhdb usernameiii”. Other
terms containing an “@” are replaced with the
token “hhhtwitter usernameiii”
The terms “S-Bahn” and “S Bahn” are replaced
with “sbahn”.
The emoticons “:-)”, “:)”, and ”:-))” are re-
placed by the token “hhhhappy smileyiii” .
The emoticons “:-D” and “xD” are replaced
by “hhhlaughin smileyiii”. The emoticons “:-(”
and “”:(” are replaced by “hhhsad smileyiii”.

Dataset Relevance

true false

train 29.761 42.231
s 25.164 24.943

dev 29.093 41.374
s 25.228 25.507

test 69.373
s 231.134

Table 3: Average Word Count in Different Rel-
evance Classes and the Corresponding Standard
Deviation

Dataset Document-level Polarity

positive neutral negative

train 28.355 32.597 30.647
s 22.477 25.599 25.992

dev 28.268 32.283 29.569
s 19.768 26.134 25.769

test 69.373
s 231.134

Table 4: Average Word Count in Different
Document-level Polarity Classes and the Corre-
sponding Standard Deviation

Punctuation characters are removed. An exception
is three or more repetitions of question marks,
exclamation points, and periods. These are
replaced with the tokens “hhhstrong questioniii”,
“hhhstrong exclamationiii” and
“hhhannoyed dotsiii” in order to retain the
emotion, expressed by the usage of such a writing
style.
Many of the feedbacks contain time specifications,
for example in the following tweet: “Nach 25
Minuten ist mein Nebenschwitzer in der Bahn
ausgestiegen”. These time specifications are re-
placed by “hhhtimeiii” using a regular expression.
Money amounts are replaced by “hhhmoneyiii”.
Other numbers are replaced by “hhhnumberiii”.
Furthermore, hyperlinks occurring within the text
are also replaced by the token “hhhhyperlinkiii”
in order to prevent overfitting. Finally, quotation
marks are replaced by “hhhquotationiii”.
After the grouping of related terms, the remaining
text is transformed to lower case and subsequently
stemmed using the German stemmer in Snowball1.
The stemmer also replaces special German
characters. The characters ß is replaced by ss and

1available from: http://snowballstem.org/, last access:
07/19/2017, license: 3-clause BSD



äöü are replaced by aou.
In a next step, the feedbacks are vectorized using
the hashing trick (Weinberger et al., 2009). For
reasons of computational efficacy, the resulting
vectors are condensed to length 16,384 applying
a modulo operation. The vector entries are the
TF-IDF (term frequency - inverse document
frequency) values of the terms (Spärck Jones,
1972).

4 Additional Features

The TF-IDF vectors are enriched with additional
information from three additional feature sources:
LIWC-features, word defectiveness, and sentiment
lexicon.
The LIWC-features are determined using the Ger-
man version of the LIWC (Linguistic Inquiry and
Word Count) computer program (Tausczik and Pen-
nebaker, 2010; Wolf et al., 2008), that “counts
words in psychological meaningful categories”
(Tausczik and Pennebaker, 2010). The LIWC tool
outputs 93 decimal values, that can directly be used
as features.
In addition to the LIWC-features, the vector is aug-
mented with a feature expressing the belonging of
a review to a certain cluster of reviews. To generate
these features, the vector space of the fastText word
representations was clustered into 100 clusters. In
order to determine the cluster centers, a large vector
space model, trained on a snapshot of all German
Wikipedia articles, a monolingual news corpus 2,
and the feedback texts themselves (train+dev+test).
The k-means algorithm was trained on this vector
space with the objective to determine 100 cluster
centers.
Furthermore, binary features resulting from Sen-
tiWS (Goldhahn et al., 2012) were used. Therefor,
a vector with the length of positive and negative
words was created. Each index in this vector is
connected to one word in SentiWS. At transforma-
tion time, the respective cell in this vector is set to
1 if the word is contained in the review and to 0
otherwise. The list of words considered as positive
has length 17,626 and the list of negative words
has length 19,961, resulting in 37,587 additional
features.
Finally, a feature expressing word defectiveness
was created. For this purpose, the German ver-

2http://www.statmt.org/wmt14/translation-task.html, last
access: 08/15/2017

sion of the LanguageTool3 was used. The Lan-
guageTool is able to detect a variety of faulty lan-
guage, including grammatical errors, missing punc-
tuation or wrong capitalization. However, since
the lower-case transformed and punctuation marks
freed version of the text was provided to it, only
errors that match the GermanSpellerRule were con-
sidered, which detects spelling errors in German
language. The feature was created by dividing the
number of times the GermanSpellerRule matches
in a feedback by the number of words in the respec-
tive feedback.

5 Feature Selection

The 1000 top features are chosen out of the 16,384
hashed BOW vectors and the additional features
except for the SentiWS-features. The features were
selected performing a c2-test (Liu and Setiono,
1995, pp. 36,37). Tables 5 and 6 show the top 20
features for the sentiment class and the relevance
class, applying c2-feature selection and mutual-
information feature selection to the BOW features.
The additional features were not considered for the
creation of these tables. Since using the hashing
trick causes hash collisions, the top features were
determined without using the hashing track and
may therefore vary slightly from the actual fea-
tures.
The mutual information analysis results in many

stop words like articles or pronouns whereas the
c2 analysis yields more meaningful terms like
“streik” (strike) or “verspat”, which is the stem of
“Verspätung” (delay).

5.1 Classifiers
Three different systems were developed and tested,
which will be explained in the following.
The first system are GBTs (Friedman, 2002) on
BOW vectors (FHDO GBT BOW). For this sys-
tem, the hashed TF-IDF weights of individual
terms are merged with the LIWC-features and pro-
vided to the feature selection algorithm. The fea-
ture selection yields the top 1000 features. For the
document-level sentiment polarity classification,
the top 1000 features include six LIWC features:
body, netspeak, other punctuation, positive emo-

tion, auxiliary verbs, and comparisons. For rele-
vance classifications, no LIWC features are among
the top 1000 features. GBTs are trained on these

3available from https://languagetool.org, last access:
07/19/2017, license: LGPL 2.1



c2 (relevance) c2 (document-level polarity)

gestartet franzos
kehrt streikend

asteroid notrufsyst
germanwing schnell

schweiz aufatm
barbi grenzuberschreit

weltmeist bahnstreik
stellenangebot lokfuhr

bahn storung
job sncf

cavendish regionaldirektion
lik tarifkonflikt

osterreich schlichtung
hhhdb usernameiii funkloch

ad beend
anna paris

schwebebahn verspat
ors gdl

bigg streik
lufthansa beendet

Table 5: Top Features Using c2-Selection

MI (relevance) MI (document-level polarity)

es fur
nicht den

zu im
re es
im auf
von ich
den re
fur nicht
ist das
auf mit
das ist
mit hhhdb usernameiii

hhhhyperlinkiii ein
ein in
in hhhhyperlinkiii

und hhhnumberiii
hhhnumberiii und

der die
die der

bahn bahn

Table 6: Top Features Using Mutual Information-
Selection

1000 top features. The maximal depth of the trees
was set to 10, the number of iterations to 30. For
document-level sentiment polarity classification, a
one-vs-rest strategy was used since the implemen-
tation of this system only supports GBTs for binary
classification. The gini-coefficient is used for impu-
rity calculation and logistic loss as the loss function.
The step size was initialized with 0.1.
The second system is a fastText classifier (Joulin
et al., 2016), trained on the preprocessed text
(FHDO FT). The word stemming was omitted for
fastText classification. Generally, the default con-
figuration was used. The dimensionality of the
word vectors was set to 100, the size of the con-
text window was set to five, negative sampling was
used for loss computation and the learning rate
was initialized with 0.05. Furthermore, the large
unsupervised corpus described in the previous para-
graph was used as an additional feature.
The supervised fastText algorithm is constructed
as follows. Instead of predicting a word, the goal
is to predict a class (or label) - for example, true

or false in the sense of document relevance. Sim-
ilar to the CBOW model (Mikolov et al., 2013),
fastText works with (language-dependent) word
embeddings. In addition to the CBOW model, fast-
Text word embeddings also make use of character-
level n-grams. In order to represent a document,
word embeddings are averaged and word order is
discarded. The model is capable of handling sen-
tences with a varying number of words. fastText
also uses bigram features in order to retain some in-
formation about the word order. The use of bigrams
is based on the impact of bigrams on classification
accuracy in sentiment analysis (Wang et al., 2012).
The model is trained by minimizing the negative
log-likelihood over classes

� 1
N
·

N

Â
n=1

yn · log( f (B ·A · xn)) (1)

where xn “is the normalized bag of features of the
n-th document” (Joulin et al., 2016), yn the label,
and A and B are weight matrices.

The third model is an ensemble of two GBT
classifiers, where one classifier is trained on
the BOW vectors and the other on the word
embedding vectors, merged with the one-hot
encoded cluster belonging and the LIWC features
(FHDO GBT NSMBL).



System 5-fold CV Train / Dev

Document-level Polarity

Baseline 0.700(±0.008) 0.710
FHDO FT 0.775(±0.007) 0.782
FHDO GBT BOW 0.728(±0.006) 0.729
FHDO GBT NSMBL 0.751(±0.004) 0.754

FT UNPROCESSED 0.757(±0.006) 0.760
FT NO PRETRAIN 0.756(±0.006) 0.764
GBT TOP 1000 0.728(±0.007) 0.728
GBT LT TOP 1000 0.728(±0.007) 0.728
GBT W2V ONLY 0.720(±0.009) 0.727
GBT W2V LIWC 0.718(±0.008) 0.725
GBT W2V SENLEX 0.734(±0.002) 0.731
MLP TOP 1000 0.734(±0.005) 0.744
MLP W2V ONLY 0.719(±0.011) 0.721
MLP W2V LIWC 0.585(±0.008) 0.587
MLP W2V LIWC SENLEX 0.646(±0.007) 0.653
MLP W2V SENLEX 0.731(±0.006) 0.742

Relevance

Baseline 0.881(±0.010) 0.882
FHDO FT 0.907(±0.007) 0.895
FHDO GBT BOW 0.893(±0.006) 0.878
FHDO GBT NSMBL 0.887(±0.004) 0.866

FT UNPROCESSED 0.891(±0.006) 0.896
FT NO PRETRAIN 0.900(±0.005) 0.894
GBT TOP 1000 0.885(±0.005) 0.878
GBT LT TOP 1000 0.886(±0.006) 0.878
GBT W2V ONLY 0.862(±0.007) 0.852
GBT W2V LIWC 0.872(±0.008) 0.858
GBT W2V SENLEX 0.862(±0.004) 0.847
MLP TOP 1000 0.864(±0.002) 0.858
MLP W2V ONLY 0.872(±0.005) 0.872
MLP W2V LIWC 0.107(±0.005) 0.106
MLP W2V LIWC SENLEX 0.810(±0.006) 0.796
MLP W2V SENLEX 0.870(±0.005) 0.858

Table 7: Results of Submitted Systems and Base-
line (micro-averaged F1 score)

The baseline results in Table 7 are provided by
organizers of the GermEval 2017 workshop 4. It
is an SVM using term frequency and a sentiment
lexicon as features.

5.2 Results
Table 7 shows the results of all three systems.
The results were computed using 5-fold cross-
validation on both the train and the dev set. The
final submission was created by training on both
sets and applying the trained model on the two test
sets. The first column shows the average of the
5-fold cross-validation and the respective standard
deviation while the second column gives the results
of the classifier trained on the given training set

4https://sites.google.com/view/germeval2017-absa/ , last
access: 07/24/2017

and validated on the given dev set.
The models whose names start with “FHDO” are
the submitted models, described in the previous
section. The other models were developed for com-
parison reasons.
FT UNPROCESSED is a model applying the same
fastText classifier used for FHDO FT to an unpro-
cessed version of the dataset, where only the tokens
were split using whitespaces as delimiters.
FT NO PRETRAIN is trained as FHDO FT, pre-
processing the text, but without incorporating the
pre-trained vectors.
GBT TOP 1000 are GBTs with the same configu-
ration as the ones in the submissions, that has been
trained on the 1000 top TF-IDF features from the
feature selection only.
GBT W2V ONLY are GBTs trained on the fast-
Text word embeddings only, whereby the word
embeddings were again computed using the pre-
trained vectors.
GBT W2V LIWC is the same setup, but taking
into account the LIWC-features as additional fea-
tures.
Accordingly, GBT W2V SENLEX are the same
setup as GBT W2V ONLY but considering the sen-
timent lexicon features as additional features.
In addition the the GBT classifier, a feedforward
multilayer perceptron (MLP) with one hidden layer
with 500 hidden units was used. The output layer
was trained using the softmax function while the
hidden layer uses the sigmoid function. The num-
ber of output units varies depending on the number
of classes. For the MLP, the same experiments
were performed as for the GBT. Consequently, the
models starting with MLP have the same setup
like the GBT -models. However, no one-vs-rest
strategy was used for the MLP.

5.3 Conclusion

The best results for both subtasks have been
achieved applying the fastText classifier with the
pre-trained vectors to the preprocessed dataset. The
micro-averaged F1 score decreased by approxi-
mately two points when performing the fastText
classification without preprocessing the dataset.
Still, the result was better than the other tested
classifiers. Using fastText without the pre-trained
vectors causes a drop of about two points in case
of document-level sentiment polarity classification
and of 0.7 points in case of relevance classification.
Applying GBT classifiers to BOW representations



instead of fastText word embedding representations
resultes in a higher micro-averaged F1 score for
both subtasks.
Using an ensemble of two different GBT classi-
fiers on two different variants of the dataset yields
a model with low variance for both subtasks.
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Appendices
A Data Augmentation

In the following, the possibilities to enhance a text
classifier by incorporating additional data sources
are discussed.

A.1 Introduction

Data augmentation is a frequently used technique
in image classification. Generating additional train-
ing data by for example mirroring, rotating, scaling
images helps by making classifiers invariant to
certain transformation and more accurate. These
techniques are not applicable in text classification
settings. However, there are various additional
expert-designed resources for language processing,
that might help improving the performance of a
text classifier. Two different resources and their
ability to increase the performance of a sentiment
classification system are determined in this section.

A.2 Experimental Setup

For the general classification task, the native
lingual German amazon product review corpus5

was used. Reviews with more than three stars
were considered as positive whereas reviews
with less than three stars were considered as
negative. Neutral reviews were ignored. For the
enhancement of the classifier, two different data
source were used: the Linguistic Inquiry and Word

Count computer program and SentiWS, which are
described in the following.

Linguistic Inquiry and Word Count (LIWC)6

(Tausczik and Pennebaker, 2010) is one of these
additional resources. This dictionary-based
text analysis program assigns words to certain
syntactical and psychological categories and yields
the relative frequency of every category. Higher
level categories are7 “Summary Dimensions”
(e.g. total word count, words per sentence),
“Punctuation Marks” (e.g. periods, comma,
exclamation marks), “Function Words” (e.g.
pronouns, articles), “Other Grammar” (e.g. verbs,

5See the other document: Sentiment Analysis Based on

Word Embeddings: Possible Improvements and Transfer to

German Language

6http://liwc.wpengine.com, last access: 08/11/2017, li-
cense: academic or commercial

7In version 1.3.1 with the German LIWC 2015 dictionary

adjectives), “Affect” (e.g. positive emotions,
negative emotions), “Social” (e.g. family, friends),
“Cognitive Processes” (e.g. cause, discrepancies),
“Perceptual Processes (hear, see, feel), “Biological
Processes” (e.g. body, health), “Drives” (e.g.
power, risk), “Time Orientation” (past / present /
future focus), “Relativity” (motion, space, time),
“Personal Concerns” (e.g. work, religion), and
“Informal Language” (e.g. swear, netspeak). There
are multiple dictionaries for other languages,
especially for German language. The advan-
tage of LIWC is that it yields new features that
can be concatenated with an existing feature vector.

SentiWS8 (Remus et al., 2010) is a resource
for German sentiment analysis, consisting of lists
of words with their respective document-level
sentiment polarity. Each word is listed with its
part-of-speech tag, its polarity weight, which is
positive in case of positive sentiment and negative
in case of negative sentiment, and a list of its
inflections. There are various possible ways of
incorporating this resource for data augmentation.

The text was preprocessed as described in
section 3: hashed BOW vectors with TF-IDF
weights were created. No feature selection was
performed.

A logistic regression model was used for the
classification task. Four different experiments were
distinguished. Each of them was performed using
10-fold cross validation.
First, the classifier was trained on the text only
without incorporating any additional data sources.
This is model is referred to as LR TEXT ONLY.
Second, a model augmented with SentiWS was
evaluated. It is referred to as LR+SENLEX. The
additional SentiWS features, were produced as de-
scribed in section 4. A binary value in the addi-
tional vector indicates the existence of the respec-
tive LIWC term in the particular document.
Third, a model augmented with the LIWC features
was created. Therefore, the particular document
was processed using LIWC and the resulting fea-
tures were appended to the feature vector. This
model is referred to as LR+LIWC.
The last model incorporates both, the LIWC and
the SentiWS features. The feature vector was sim-

8http://wortschatz.uni-leipzig.de/de/download, last access:
08/11/2017, license: CC BY-NC-SA 3.0, current version:
v1.8c



Model ?micro-averagedF1 Significance

LR TEXT ONLY 0.806(±0.014)
LR+SENLEX 0.829(±0.014) *
LR+LIWC 0.817(±0.016) *
LR+SENLEX+LIWC 0.844(±0.007) *

Table 8: Results of the Data Augmentation Experi-
ments: the significance is always determined with
respect to LR TEXT.

ply created by merging the hashed BOW features,
the LIWC features, and the SentiWS features. This
model is referred to as LR+SENLEX+LIWC.

A.3 Results
The results of the experiments are shown in Table
8. The different systems were evaluated using the
micro-averaged F1-score. Each model is denoted
with its respective standard deviation given in
braces behind the scores.

The significance of each model is indicated using
the following convention: “ns” means no signifi-
cance (p > 0.05), * means p  0.05, ** means p 
0.01, and *** means p  0.001. The significance
is evaluated using a two-sided paired Wilcoxon-
Mann-Whitney-Test relating to LR TEXT ONLY.

A.4 Conclusion
Both, LIWC as well as SentiWS are able to enhance
the performance of a logistic regression classifier
whereas a combination of both data sources yields
the best results. In the setup, that is described in
this section, SentiWS was used as a simple word
list. The polarity weights of SentiWS were not
used. Further research could examine in which
configuration sentiment lexica can be used the most
efficient way.
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bzw. eine fahrlässige falsche Versicherung an Eides Statt mit Freiheitsstrafe bis zu drei Jahren

bzw. bis zu einem Jahr oder mit Geldstrafe bestraft werden kann.

Dortmund, den 29.8.2017

Leonard Hövelmann


